
Maximum
DirectStorage

Ani Alston
Graphics Engineer

04/2023

2

Overview

GPU Decompression for Asset streaming

DirectStorage Architecture on Intel® Graphics

Writing Optimized DirectStorage 1.1 Application

Intel® Expanse & Microsoft BulkLoad Demo

Summary

3

DIRECTSTORAGE 1.0

Reduced CPU

Overhead
Faster

Load times

Better Utilization

of SSDs

Improved System
Performance

PCIe 4.0 & 5.0
support

DIRECTSTORAGE 1.1

Reduced

Load Times

Improved

Throughput

GPU

Decompression

High-Performance
Assets Streaming

Software Advances with
Modern Hardware

CPU →GPU

DECOMPRESSION

DirectStorage On Intel® GPUs

4

Overview

GPU Decompression for Asset streaming

DirectStorage Architecture on Intel® Graphics

Writing Optimized DirectStorage 1.1 Application

Intel® Expanse & Microsoft BulkLoad Demo

Summary

5

Faster level load times*

Free CPU cycles

Reduce system bandwidth utilization

A scene from Expanse showing nearly 1,000 textures, each over 350 MB in
size, uncompressed, using about 100 MB of physical GPU memory.

* Pre-production feature, results may vary based on system configuration

GPU Decompression Benefits

▪ DX12 Ultimate

▪ GPU with Shader Model 6.0 support

▪ NVMe SSD (recommended)

▪ Windows 11 (recommended)

Requirements

6

Game asset streaming optimization

Direct
Storage

1.0

NVMe SSD RAM VRAM

CPU

Direct
Storage

1.1

NVMe SSD RAM VRAM

GPU

Key:

Compressed Data

Decompressed Data

7

Overview

GPU Decompression for Asset streaming

DirectStorage Architecture on Intel® Graphics

Writing Optimized DirectStorage 1.1 Application

Intel® Expanse & Microsoft BulkLoad Demo

Summary

8

DirectStorage Stack

Storage Stack

NVMe SSD GPU

Intel® D3D12 Driver
Intel® Optimized Decompression

IO
 S

W
/H

W
 S

ta
c

k

API

DirectStorage Runtime

9

Driver Resident Acceleration

Compressed Asset Stream DirectStorage Queue

Asset Stream Decompression Request

DirectStorage Runtime API

Kernel Selection

DirectStorage Meta Command

Command Generation
and Dispatch

10

Overview

GPU Decompression for Asset streaming

DirectStorage Architecture on Intel® Graphics

Writing Optimized DirectStorage 1.1 Application

Intel® Expanse & Microsoft BulkLoad Demo

Summary

11

Build Iconic Scenes

Real-time texture streaming, demo updated with
DirectStorage 1.1 (GPU HW Decompression)

Built on top of the Sampler Feedback and Virtual
Texture* tech, although DirectStorage doesn’t
depend on it

Loading from:
350GB disk assets (16k x 16k textures)

Using only:
128MB Staging buffer + ~230MB Runtime texture
space of VRAM

1

2

3

4

https://github.com/GameTechDev/SamplerFeedbackStreaming

* Virtual textures can add overhead if not managed correctly

https://github.com/GameTechDev/SamplerFeedbackStreaming

12

Debug view of the mip sampler feedback

mip 0 mip 1

mip 2 & 3

min mip map

1000 planets

~350 MB for each 16k x 16k

~350 GB total assets

13

Sample(sampler, clamp)
WriteSamplerFeedback() in HLSL

C
P

U
G

P
U

Texture

Opaque
Feedback

Min Mip Map
Feedback

Min Mip Map
Residency

ResolveFeedback()

API call

Process Feedback
(modifies data structs)

Lists of: Loads
Evictions

Atlas(es)
Aliased with
Texture(s)

Direct Storage
Copy

Fences
Map Resources

Monitor fences
(copy and map)

Update Residency
(modifies data

structs)

14

Async Queues
C

P
U

G
P

U

N
o

 W
a

it
s

N
o

 L
o

c
ks

In
 P

a
ra

lle
l

Render Objects

Find Deltas

Map Tiles

Upload Batches

Notify Completions

Update Residency

File I/O

Render Queue

Map Queue

Copy Queue

Render Objects

Find Deltas

Map Tiles

Upload Batches

Notify Completions

Update Residency

File I/O

15

DirectStorage Code Example: Creating Objects

ComPtr<IDStorageFactory> dsFactory;

ComPtr<IDStorageFactory> dsFile;

ComPtr<IDStorageQueue> dsQueue;

HRESULT h1 = DStorageGetFactory(IID_PPV_ARGS(&dsFactory);

HRESULT h2 = dsFactory->OpenFile(in_path, IID_PPV_ARGS(&dsFile));

DSTORAGE_QUEUE_DESC queueDesc{};

queueDesc.Capacity = DSTORAGE_MAX_QUEUE_CAPACITY;

queueDesc.Priority = DSTORAGE_PRIORITY_NORMAL;

queueDesc.SourceType = DSTORAGE_REQUEST_SOURCE_FILE;

queueDesc.Device = pD3D12Device;

HRESULT h3 = dsFactory->CreateQueue(&queueDesc, IID_PPV_ARGS(&dsQueue));

https://learn.microsoft.com/en-
us/windows/win32/dstorage/dstorag
e-interfaces

https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage-interfaces

16

DirectStorage Code Example:
Loading a Texture Tile

https://learn.microsoft.com/en-
us/windows/win32/dstorage/ds
torage-enumerations

DSTORAGE_REQUEST request{};

request.Options.CompressionFormat = DSTORAGE_COMPRESSION_FORMAT_GDEFLATE;

request.Options.SourceType = DSTORAGE_REQUEST_SOURCE_FILE; // 1 Bit member, only disk or mem

request.Options.DestinationType= DSTORAGE_REQUEST_DESTINATION_TILES; // mem, buffer, tex region, mips

request.Source.File.Source = in_dsFileHandle;

request.Source.File.Offset = fileOffset;

request.Source.File.Size = numBytes; // 64KB or less if compresses

request.Destination.Tiles.Resource = pD3DResource;

request.Destination.Tiles.TiledRegionStartCoordinate = D3D12_TILED_RESOURCE_COORDINATE{ x, y, 0, mip };

request.Destination.Tiles.TileRegionSize = D3D12_TILE_REGION_SIZE{ 1, FALSE, 0, 0, 0 };

request.UncompressedSize = D3D12_TILED_RESOURCE_TILE_SIZE_IN_BYTES;

dsQueue->EnqueueRequest(&request);

https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage-enumerations

17

DirectStorage Code Example:
Loading a Texture Tile

dsQueue >EnqueueSignal(fence.Get(), fenceValue++);

dsQueue >Submit();

Signal before submit DirectStorage will auto-
submit when its queues fill

18

Overview

GPU Decompression for Asset streaming

DirectStorage Architecture on Intel® Graphics

Writing Optimized DirectStorage 1.1 Application

Intel® Expanse & Microsoft BulkLoad Demo

Summary

19

Expanse demo

Expanse live demo stats
expanse.exe -maxnumobjects
985 -numspheres 9999 -
hidefeedback -camerarate 0.4 -
animationRate 0.4 -
lightFromView

20

stress.bat

Result from Expanse

▪ File bytes to read (per iter): 25,469,019,672

▪ Number of requests: 407879

▪ Staging buffer size: 128 MB

▪ # iterations: 4

▪ Bandwidth: 4971.87 MB/s from disk

▪ Bandwidth: 5218.17 MB/s uncompressed to GPU

▪ timingstart 200

▪ timingstop 700

▪ capturetrace traceplayer.exe

▪ file uploadTraceFile_1.json

▪ mediadir media

▪ staging 128

*Performance may vary.
Test system - Graphics: Intel® Arc™A770 16GB Graphics, Graphics Driver: 4257, Processor: Intel® Core™ i9-12900K, MSI MPG Z690, BIOS: 1.10, Memory: 32GB (2x16GB) DDR5 @ 4800MHz,
Storage: Samsung 980 Pro NVMe, OS: Windows 11 Version 22621

21

Optimization findings from Expanse:
Factors Affecting Bandwidth

Mapping Time (UpdateTileMappings)

Pipelining – Staging buffer size

Request Size and Number of
Requests in Flight

22

UpdateTileMappings

Performance can degrade over time
due to heap fragmentation creating a
bottleneck in the pipeline when
moving data from CPU to GPU

https://learn.microsoft.com/en-us/windows/win32/api/d3d11_2/nf-d3d11_2-id3d11devicecontext2-updatetilemappings

Tip

Use more
smaller
heaps

23

Pipelining: Staging Buffer Size

The right value for
SetStagingBufferSize is rather
important when decompression is
enabled

https://learn.microsoft.com/en-us/windows/win32/api/d3d11_2/nf-d3d11_2-id3d11devicecontext2-updatetilemappings

Tip

Chose a value
based on profiling
as it helps improve

pipelining
between SSD

loads and GPU
decompression

24

Request size and Requests in Flight

How does latency
in SSD’s and
GPU’s work?

https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage/nf-dstorage-idstoragecustomdecompressionqueue-getrequests

Tip

Optimization Tip:
Minimize # Submission

Corollary: Maximize
Requests/Submit

25

MSFT BulkLoad demo

Uncompressed asset

No runtime decompression

Compressed Asset

CPU decompression

Compressed asset

GPU decompression

https://github.com/microsoft/DirectStorage/tree/main/Samples/BulkLoadDemo

26

BulkLoad demo runs results (9.14 GB)

No asset compression

Load time: 1.34 sec

Bandwidth: 6.80 GB/s

CPU usage: 1.43 %

GPU decompression

Load time: 0.52 sec

Bandwidth: 17.85 GB/s

CPU usage: 1.15 %

CPU decompression

Load time: 1.20 sec

Bandwidth: 7.58 GB/s

CPU usage: 100 %

*Performance may vary.
Test system - Graphics: Intel® Arc™A770 16GB Graphics, Graphics Driver: 4257, Processor: Intel® Core™ i9-12900K, MSI MPG Z690, BIOS: 1.10, Memory: 32GB (2x16GB) DDR5 @ 4800MHz,
Storage: Samsung 980 Pro NVMe, OS: Windows 11 Version 22621

27

Demos Takeaways

▪ Games can eliminate extended load times

▪ Streaming made faster and easier to implement

▪ Unleash developers' imagination with instant access
to hundreds of gigabytes of data

*Compressed images, not
representative of actual demo

28

Overview

GPU Decompression for Asset streaming

DirectStorage Architecture on Intel® Graphics

Writing Optimized DirectStorage 1.1 Application

Intel® Expanse & Microsoft BulkLoad Demo

Summary

29

Summary

Intel Iris Xe Graphics and Intel Arc GPUs support DirectStorage 1.1

Begin developing with DirectStorage 1.1 today

We can’t wait to see how innovative developers will use this feature!
Email gamedevtech@intel.com for questions

30

Resource

Expanse Demo - Sampler Feedback

Streaming With DirectStorage

Bulk Load Demo

DirectStorage 1.1 Now Available

DirectStorage 1.1 for Intel GPUs

DirectStorage API reference

DirectStorage enumerations

URL

https://github.com/GameTechDev/SamplerFeedbackStreaming

https://github.com/microsoft/DirectStorage/tree/main/Samples/BulkLoadDemo

https://devblogs.microsoft.com/directx/directstorage-1-1-now-available/

https://www.intel.com/content/www/us/en/developer/articles/news/directstorage-on-intel-gpus.html

https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage-api-reference

https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage-enumerations

References

https://github.com/GameTechDev/SamplerFeedbackStreaming
https://github.com/microsoft/DirectStorage/tree/main/Samples/BulkLoadDemo
https://devblogs.microsoft.com/directx/directstorage-1-1-now-available/
https://www.intel.com/content/www/us/en/developer/articles/news/directstorage-on-intel-gpus.html
https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage-api-reference
https://learn.microsoft.com/en-us/windows/win32/dstorage/dstorage-enumerations

31

Hisham Chowdhury

Sreenivas Kothandaraman

Daniele Pieroni

Alexander Kharlamov

Marissa Du Bois

Ethan Davis

Daniel Jacobsen

Ashley Gregory

Vinod Tipparaju

Pradeep Radhakrishna

Patrick Farrell

Pete Brubaker

Allen Hux

Damyan Pepper

Cassie Hoef

Cooper Partin

Acknowledgements

32

Thank you

33

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex (graphics and accelerators).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be
absolutely secure.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel technologies may require enabled hardware, software or service activation.

All product plans and roadmaps are subject to change without notice.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial"
names and not intended to function as trademarks.

Statements that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many
risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors
that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as
the property of others.

http://www.intel.com/PerformanceIndex

