Programming for Hybrid:
Untangling your Threads

eigh Davies

Senior Game/Graphics Application Engineer

03/2023

Data Capture

2 Presentation footer

|

LU
UL

Intel Hybrid Architecture

Performance —— Perfo
Core | w

>
O
C
0]
e
@©
—
~~
)
O
C
(]
&
=
O
et
-
0}
an
l_
n

MT Performance/Throughput

|

ua|
ua|

Intel Hybrid Architecture

P-Core E.e E‘
- &

L2 (MLC) L2

P-Cores have their own L2 caches, and E-Cores
share L2 caches in groups of four.

specint17 ST PnP ULX

ROCKET LAKE ALDER LAKE RAPTORLAKE
FEATURES | (i9-11900k) (i9-12900k) (i9-13900k)

Efficient Cores are
comparable to earlier
generation Performance
Cores

v 5.8GHz
v 5I12KB v' 1280KB v’ 2048KB
v 0 v 8 v 16

v N/A v 2048KB v 4096 KB

Arch State Arch State

Data caches
000
> CPU

front-End Execgtlon
Engine

L]
ENEN .

task1(blue)

B

All cores have the same performance profile

» Significant performance delta between cores
» Same ISA = same throughput

Hyper Threading doubles the physical core count

Hyperthreading may be available on only some
coresin a package

Logical core count may not equal 2x physical
core count

All cores have the same frequency

» There may be one, two, or more, faster cores

» The fastest core may move around the
package

Optimizing the CPU only matters if CPU Bound

= Power may be shared between
GPU/CPU/Other -> frequency impact

Typedef pSLPI_EX SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*
uintptr_t affinity;

if (GetLogicalProcessorinformationEx(RelationAll, (0SLPI_EX)&buffer[0], &size))
]
for (size ti=0;i<size;)

3
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX* procinfos = (pSLPI_EX) &bufferlil:

Preferred Enumeration method:

switch (proclnfos->Relationship)

GetLogicalProcessorinformationEx() {

case RelationProcessorCore:

3

for (LiNt32_t g = O; g < proclnfos->Processor.GroupCount; ++g)

LPNumber = BitScan(proclnfos->Processor.GroupMask[g].Mask);
[LPClass = proclnfos->Processor. EfficiencyClass;

%
toreak;

case RelationCache:

3

cache.m_ProcessorMask = proclnfos->Cache.GroupMask.Mask;

toreak;
5
i += proclinfos->Size;
%
5

Case Studies

No central scheduler

» Scheduling routines are called whenever events occur that change the state of a thread
= Example scheduling events include:

A thread becomes ready to execute (newly created or released from wait state)

A thread enters a wait state or ends

Interval timer interrupts

Other hardware interrupts (for I/O wait completion)

Quantum End

A thread priority is changed

Thread QoS changes

System concurrency/utilization changes (causing parking)

Intel® Thread Director updates

Priority Class Relative Priority

Relative Priorities Above

Real time Normal
Normal

To improve scalability Windows 8+ added Shared
Ready Queues: Reduce contention on Ready Queue.

P1

(CPUO,..) (cPU8Y.)
Ready-Queues Ready-Queues

Ready summary Ready summary

Priority driven, preemptive

On wake

Running Ready

. from Wait state

Preemption

Running Ready

from Wait state

Action:

Voluntary switch

Running Ready

Action:

to Waiting state

Quantum End

Running Ready

Action:

Boost Decay over Time

Quantum

Boost Upon
Wait Completion

>
=
=
9o
s
o

Base
Priority

ThreadID TotalCPU%

5048 96.61

Priority Decay
At Quantum end

Round Robin at

Pre-empt
Base priority

(before quantum end)

Priority (%)
12 13 14 15

246 8626 096 293 O

Windows 11+ Only

Windows Core Parking Engine

Makes global scalability decisions about the workload and
determines the optimum set of compute cores for execution.

Max Turbo vs All core frequency
Enhance battery life
Prioritize shared resources

Etc....

Power Management Settings related to Scheduling /
Parking: Varies by power plan.

CPMinCores: Specifies the minimum percentage of logical
processors that can be unparked state at any
giventime.

CPMaxCores: Specifies the maximum percentage of logical
processors that can be unparked state at any
giventime.

CPIncreaseTime: The minimum time that must elapse before
additional logical processors can be transitioned
from the parked to the unparked state.

CPDecreaseTime: The minimum time that must elapse before
additional logical processors can be transitioned
from the unparked to the parked state.

CPHeadroom: Specifies the additional utilization that would
cause the core parking engine to unpark an
additional parked logical processor

P-Core P-Core

LPO

P-Core P-Core

LPO

P-Core P-Core

LPO

New thread ready to run

Does the OS have
Idle Processors

o / Prune away based
RRStEining LP's on Thread Affinities

Prune out
Parked LP’s

Attempt to Unpark

OS Selected LP

Noldle LP's

No remaining LP’s

Select a processor, using
Ideal processor
Last processor

: New LP
Unable to unpark Or new core unsuitable =

Available SMT Sibling usage
OS withThread Director Feedback

Select an active processor, using
Ideal processor
Last processor

OS with Thread Director Feedback

Assign to front of
Ready Queue

Thread s > priority
than current

Add to end of Rdy
Queue

OS scheduler will move threads based on their priority, QoS and performance/efficiency HW metrics

OS scheduler will try to Core Parking Avoid Hard Affinities
assign work based on:

® Use OS Hints for soft

= Most performant core OS will park inactive and
affinity

used first are used first lightly utilized logical
for single-thread & processors. = Any ISV code providing
multi-thread affinity could potentially

performance fSaves po_we;, £ hlgher see perf degrades as OS
requENCICE TONTSIEEE cannot override the

Spill over multi- processors. decision
threaded work uses
additional physical for
MT-performance

Recent changes have QoS,

made the OS more SetThreadldealProcessor
aggressive at parking help determine where the
SMT siblings are used for DC scenarios. OS will gueue a thread to

last to avoid any AC scenarios are run.
- . |
contention impactin .
erion different due to CPUSets APL. This API
softparklatency tunings takes HGS do not use hints

into account and breaks
affinity

Game Dev Guide for 12th Gen Intel® Core™ Processor

Workload Scalability

Not all workloads scale with
increased core count

Increased threads add
overhead in context switches/
synchronization APls,
reduced cache and shared
hardware resources

Scale thread count based on
workload benefits

GetlLogicalProcessorinformationEx

® To scale application based on best
fit to hardware

https://www.intel.com/content/www/us/en/developer/articles/guide/12th-gen-intel-core-processor-gamedev-guide.html

Closing Thoughts

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.o4t7l6
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://github.com/GameTechDev/PresentMon
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/

A B C D 3 F G H I] K L M N 0 P Q
1 Applicatic ProcessID SwapChai Runtime Syncinten PresentFl:Dropped TimelnSe(msinPrese msBetwes AllowsTe: PresentM msUntilRe msUntilDi msBetwet msUntilRe msGPUACH
2 lengine.ex 13724 0x000000C DXGI 0 512 0 0.005755 0.3022 3.5081 1Hardwere 41077 41077 3925 01821 3.9256
3 lengine.ex 13724 0x000000C DXGI 0 512 0 0.013463 01472 3.7082 1Hardwere 43733 43738 39743 03935 3.9743
4 \engine.ex 13724 0x000000C DXGI 0 512 0 0.017083 01789 3.6154 1Hardware 50149 50149 42605 0.7544 4.2605
5 lengine.ex 13724 0x000000C DXGI 0 512 0 0.021378 01583 4.2951 1Hardwere 5.6613 56613 43415 07198 4.9415
6 lengine.ex 13724 0x000000C DXGI 0 512 0 0.026208 0.2023 4.83 1Hardwere 47731 47731 39418 0.8313 3.9418
T lengine.ex 13724 0x000000C DXGI 0 512 0 0.030531 01615 4.3226 1Hardware 44052 44052 39547 04505 3.9547
8 \engine.ex 13724 0x000000C DXGI 0 512 0 0.035185 01769 4.6541 1Hardwere 3702 3702 39509 -0.2489 3.9509
9 lengine.ex 13724 0x000000C DXGI 0 512 0 0.035992 0166 4.8078 1Hardwere 28466 2.8466 3.954 -1.1058 3.946
10 |engine.ex 13724 0x000000C DXGI 0 512 0 0.044595 01789 4.6027 1Hardwere 29354 29354 46915 17361 41153
11|engine.ex 13724 0x000000C DXGI 0 512 0 0.043307 01798 4.7115 1Hardwere 27933 27933 45694 17761 4.1034
12 |engine.ex 13724 0x000000C DXGI 0 512 0 0.054221 01599 4.9143 1Hardware 35637 35637 5.6847 -2121 4.8955
13 |engine.ex 13724 0x000000C DXGI 0 512 0 0.058722 0.1463 4.5014 1Hardwere 3.1657 3.1657 41034 -0.9377 4.0963
14 |engine.ex 13724 0x000000CDXGI 0 512 0 0.063395 01695 4.874 1Hardware 27361 27361 44428 -17067 41992
15 |engine.ex 13724 0x000000CDXGI 0 512 0 0.068466 0.1854 4.8711 1Hardware 27998 27998 49348 -2135 4142
16 |engine.ex 13724 0x000000CDXGI 0 512 0 0.072951 0.1581 4.4855 1Hardware 27594 27594 44451 -1.6857 41327
17 |engine.ex 13724 0x000000CDXGI 0 512 0 0077578 01589 4.6265 1Hardware 2993 2993 48601 -1.8671 4.379
18 |engine.ex 13724 0x000000CDXGI 0 512 0 0.082237 0.1837 4.6587 1 Hardware 29332 29332 45989 -1.6657 4.0976

msGPUActive
=GPU Timing

msBetweenPresents msUntilDisplayed

= Display Latency

= CPUtimgs

N
tt |\\

Simple to plo

GPU Ims faster than CPU

Big CPU frame time
variations

Areas of interest: Possible
|O stalls, memory paging

Graphics Queue

Compute Queue ‘

GPU Stall
Main Thread

Worker Threads

CPU Concurrency: |

Xperf/WPA:

System Concurency

A lot of customisable views into OS/hardware level data

A lot of customisable views into OS/hardware level data

A lot of customisable views into OS/hardware level data

4 Processor Parking State Parking State by Processor = [(5}

Series

CPU: 4
CPU:5
CPU:6
CPU:7
CPU:8

CPU: 10

Line# CPU

5
[
7
8
9
0
1

-~

=R = R R

1

State {Mumber) using rescurce time as [Entry Time, Exit Time] {Aggregation: Average)

:
TETTRTET] ATARTRTE

| |
| |
1) ||II||IIII|I||||||I|II||IIII|I |I||||I|| ||I|| ||||I|||| |I||||||| IIIIIIIII ||I|I|||| IIIIIIIII ||I|||||| IIIIIIIII |||||||||I||I|I||II||IIIII|IIIIIIII|I|||I||||| |I|||
565 570 575 580 585 500 595 600 605 610 615 620 625 630 635 640 645 650
Parking Node State Entry Time (s) ° Exit Time (s) % Duration o Sum:Duration (ms) um St
0 - Ox0DD00DDODOFFFFFF Unpark 0.000000000 20.772666000 5.30 20,771.213200
0 - Ox0DD00DDODOFFFFFF Unpark 0.000000000 20.772666000 5.30 20,771.213200
0 - Ox0DD00DDODOFFFFFF Unpark 0.000000000 20.772666000 5.30 20,771.215200
0 - Ox0DD0O0DDODOFFFFFF Unpark 0.000000000 20.772666000 5.30 20,771.215200
0 - Ox0DD00DDODOFFFFFF Unpark 0.000000000 20.772666000 5.30 20,771.213200
0.32 1,259.553200
0 - Ox0DD0ODDDODOFFFFFF Unpark 5.549681700 5.863934100 0.08 314.312400

A lot of customisable views into OS/hardware level data

a CPU Usage (Precise) Timeline by Process, Thread «

Series

~ MewProcess: engine.exe (15352)
NewThreadid: 2,816

MNewThreadld: 10,376 LR [| L
MewThreadld: 10,596 HIHHE- | - HE-IH 1.
MewThreadld: 1,028 11— IH- R -

NewThreadld: 7,760 g8 Il | B (]]
MewThreadld: 7,976 FIH- . 1] - (L8R] | 1H Thread T|mel|ne
MewThread|d: 14,052 148 §1 | W L 8 8% 1 Bemiil [l [} [0 IRR I8 | | nm

MewThreadld: 12,9228
MNewThreadld: 12,816
MewThreadld: 6128
MNewThreadld: 8,376
MewThreadld: 11,430
MewThreadld: 10,584
MewThreadld: 10,852
MewThreadld: 11,256
MewThreadld: 2,032

5l

4 Processor Parking State Parking State by Processor

Series State {Mumber) using rescurce time as [Entry Timne. Exit Time] {Aggregation: Aversge)
CPU: 0 - L
CPL: 1]
CPU: 2]
cPU: 3 -_— S0 m
CPLU: 4 L
CPU: 5 - g
cPu: s - Core Parking
oI 7 —
Line® CPU B " Parking Mode State Entry Time (s} °| Exit Time (s) % Duration cum SumiDuration (ms) cum State (Number) g Legend
1 0 0 - OxD00DDDODDODDFFFF Unpark 0.0000D0000 20.808816700 6.25 20,795.401600 1 -
2 1 0 - 0x000DODODODODFFFF Unpark 0.000000000 20.208216700 6.25 20,799.401600 1 -
2 2 0 - 0xDO0DDDODDODDFFFF Unpark 0.000000000 20.202216700 6.25 20,792.401600 1 -
4 2 0 - 0xD00DDDDDDODDFFFF Unpark 0.000000000 20.808816700 6.25 20,799.401600 1 -
s 4 0 - OxDOODODOODDOOFFFF Unpark 0.000000000 20.208816700 6.25 20,799.401600 1/
6 5 0 - 0x0D00DDDODDOOOFFFF Unpark 0.000000000 20.208216700 6.25 20,799.401600 1/ -
7 & 0 - 0x0DO0DDODDDODDFFFF Unpark 0.000000000 20.808816700 6.25 20,799.401600 1 -
8 70 - 0xD0000000DD0OFFFE Unpark 0.000000000 20.208216700 6.25 20,799.401600 1 .
4 Generic Events Activity by Provider, Task, Opcode ~ 53 0=
Series
= Provider Name: Microsoft-Windows-Direct3D12] [X] - - DX'|2 Events
I Task Name: CommandList | P BB ¢ B NS ¢ AR ¢ B ¢ ABS AP - B b INBE ¢ e ¢ I ee W
= Task Mame: ExecuteCommandList | F& -+ e + *+ 8 [LEEX] LEZE D *+ e LIE K 3 [LINELXE 2 L 3 ETX 3 EE K 3 LT X 2
- S48 ¢ 448+ 4B ¢ 44 @ [N) I) + s @ * » i + e ® e @
Opcede Mame: win:Start) + 4B ¢ 4B e e & 44+ @ + [+ & +e » + 4+ &

.377893647s

Multiple views use same zoom/easy to align data

CPU :Timeline by Process, Thread

Thread Duration by Core type

5000 10000 15000

P-Cores(ms)

E-Cores(ms)

20000

CPU Usage (Precise) View Editor X
CPU Usage (Precise) Timeline by Process, Thread * = Advanced

Available Columns Visible Mame Aggregaticn Sort A Column Details
% CPU Usage g MewThreadStack Waits (us) Details
Annotation Ready Thread Stack Tag) .

Text Al t Right i

Count [] Ready Thread Stack (Frame Tags) St Algnmen | 9
Count:Waits [] ReadyThreadStack Width: 100 |
Cpu [] ReadyingProcess Name Mone ~ MNone v Custom format: | Milliseconds N
CPU Usage (ms)
IdealCpu Ready (us) Sum ¥ None v A
astbwitchOutTime <) Waits (us) Eh e ’ Custom format doesn't

change the column header
on some versions of WPA

Ready summary

31

Group 2
(CPU8Y.)
Ready-Queues

Ready summary

3l

Time in Shared Ready queue Time thread is in wait state

Max Ready Queue

Group 2

' Longest wait
(CPU8Y.)

Ready-Queues
Render 7444 20125.96 4394 749.32 50467.6 5044
Game 1256 19926.66 6212 831.01

3319.6 27374
Worker 1| 10376 8285.756 240.84 12276.28 10014.7 71946

10017.6 73448
10013.5 72006

Worker 2 10852 8233.223 237.80 12327.32
Worker 3 7976 8213.791 254.07 12326.72

Ready summary Ready summary

3l 3l

Hybrid system has:
= Smaller Wait time for main 2 threads Less context switches for
= |ess Ready time on Render thread allmain threads

Group 2
(CPU8Y.)
Ready-Queues

Render 20125.96 749.32 50467.6 5044
Game 19926.66 83101 3319.6 27374
Worker 1| 8285.756 12276.28 10014.7 71946
Worker 2 8233.223 12327.32 10017.6 73448
Worker 3 8213.791 12326.72 10013.5 72006

Ready summary Ready summary

3l 3l

Smaller max. Ready time

Render 13968 2014711 62740 65934
Game 5048 20084.29 645.93 27853
Worker | 13324 7927543 12406.89 18072.9
Worker 2 14880 7589.991 1252915 17040.8
Worker 3 16312 /570.553 1254799 | 18143.7

NewThread
Stack

The stack of the new thread wheniitis
switched in. Usually indicates what the
thread was blocked or waiting on.

Quantum End
call stack ends in normal
game code

Yield
call stack ends in
tasking system SleepEx

i} Microarchitecture Exploration ~ +

Analyze CPU microarchitecture bottlenecks affecting the performance of your application. This analysis type Is
based on the hardware event-based sampling collection. Le;

ing interval, ms

anularity for the top-level metrics:
Front-End Bound

Bad Speculation

Memory Bound

Core Bound

Retiring

Analyze memory bandwidth

Evaluate max DRAM bandwidth Copy Command Line to Clipboard
Collection mode
Command line:

Detailed -
"C:\Program Files (x86)\Intel\oneAPI\vtune\latest\bin&4\vtune” -collect uarch-

Detail N exploration -knob sampling-interval=8.1 -data-limit=8 -finalization-mode=full --
stalls duration 28 --target-pid 1@

Metric

CPI Rate

Cache Bound

Contested
Accesses

Back-End
Bound

Front-End
Bound

Data Sharing

Memory
Bound

Description

Cycles per Instruction Retired, or CPIl, how much time each executed instruction took, in units of cycles. Modern
superscalar processors issue up to four instructions per cycle, suggesting a theoretical best CPI of 0.25.

This metric shows how often the machine was stalled on L1, L2 and L3 caches.
This metric also includes coherence penalties for shared data.

Contested accesses occur when data written by one thread is read by another thread on a different core.
Examples of contested accesses include synchronizations such as locks, true data sharing such as modified
locked variables, and false sharing.

Back-End Bound metric represents a Pipeline Slots fraction where no uOps are being delivered due to a lack of
required resources for accepting new uOps in the Back-End

Front-End Bound metric represents a slots fraction where the processor's Front-End undersupplies its Back-End

Data shared by multiple threads (even just read shared) may cause increased access latency due to cache
coherency.

This metric shows how memory subsystem issues affect the performance. Memory Bound measures a fraction of
slots where pipeline could be stalled due to demand load or store instructions.

Import results into VTune Ul, use a custom grouping to sort thread activity into core type

Select grouping levels from:

Basic Block

Call Stack

Class

Code Location

Frame

Frame Domain

Frame Duration Type

Function Range

Module

OpenMP Barrier-to-Barrier Segment
OpenMP Barrier-to-Barrier Segment Type
OpenMP Region

OpeniMP Region Duration Type
Package

Packet Submission 1D

Packet Type

Physical Core

Source File

Source Function

Task Domain
Tack Tune

Customize the grouping:

Bottom-up

Grouping:| (custom) Process / Thread / Core Type / Logical Core / Function

Process
Thread
Core Type
Logical Core
Function

Maximum acceptable number of elements in the grouping is reached.

Process | Tread | Core Type Logial T Clockicks ¥ PP =] —— P-Core S —
re / Function P-Core E-Core Retiring [*/| Front-End Bound [»/ | Bad Speculation */| Back-End Bound [»/
+ Pid 0x3664 161.264s (NG 548,780,800,000 175,555,200,000 743,382,400.000 0.974 18.0% 19.7% 247% 37.6%
b Thread (TID: 9496) 19.382s @ 94.364,800,000 278,400,000 102,348,800,000 0.925 9.9% 11.3% 959.6% 19.2%
b Thread (TID: 13864) 18.987s B 92,291,200,000 214,400,000 55,571,200,000 1.665 9.4% 25.0% 29.9% 35.8%
I Thread (TID: 416) 75133 | 20.774,400,000 12,192,000,000 38.793,600.000 0.850 25.5% 19.2% 13.3% 42.0%
I Thread (TID: 13648) 74125 | 20.662,400,000 11,445,400,000 38.220,800.000 0.840 22.6% 201% 14.3% 43.0%
b Thread (TID: 14564) 7.3263 20,112,000,000 11,608,000,000 37,091,200,000 0.861 22.4% 17.9% 19.8% 39.8%
7.380s 19,977 600,000 11,795,200.000 37,500,800,00Q - 25.9% 18.6% 9.7% 45.9%
A] i —— o ! BS0mm ol i -) 25.4% 20.3% 9.1% 45.2%
o 3874s | 19,219,200,000 0 24.332,800.000 254% 20.3% 9.1% 45.2%
» cpu_10 ﬁ&?ﬂ s 2,505,600,000 0 2,905,600,000 0.862 22.5% 19.7% 11.3% 46.5%
b cpu 0 0.39% 1,968,000,000 0 2,291,200,000 0.859 19.0% 27.9% 0.0% 63.2%
b cpu_8 0.390s ~\ 1.926,400,000 0 2,396,800,000 0.804 24.3% 25.8% 12.3% 37.6%
»cpu_2 0.385s | \\ 1,916,800,000 0 2,652,800,000 0.723 27 1% 20.7% 0.2% 52.0%
» cpu_12 0.292s | ‘\ 1,443,200,000 0 1,920,000,000 0.752 32.7% 14.9% 15.2% 37.2%
b cpu_1 0.273s | \¢321 ,600,000 0 1,776,000,000 0.744 17.4% 21.7% 22.5% 38.3%
> cpu_13 0.273s | 1‘3&400,000 0 1,740,800,000 0.757 33.3% 231% 0.0% 47.2%
» cpu_14 0.227s | 1‘129‘EthOU 0 1,600,000,000 0.706 23.8% 291% 0.0% 66.2%
> cpu_4 0.246s | LUSWEUU,O%\ 0 1,395,200,000 0.787 41.2% 0.0% 42.7% 16.1%
» cpu_15 0.215s | 1,068,800,000 ‘\ 0 1,382,000,000 0.768 19.5% 18.3% 226% 39.6%
b cpu_S 0.167s | 889,600,000 ‘\ 0 1,104,000,000 0.806 31.5% 11.1% 19.2% 38.3%
> cpu_7 0.189s | 867,200,000 ‘\ 0 1,017,600,000 0.852 27.3% 31.2% 0.0% 49.2%
b cpu_3 0.116s 595,200,000 k] N 640,000,000 0.830 20.5% 27.7% 0.0% 60.3%
b cpu_9 0.120s 572,800,000 0 ‘\A 761,600,000 0.752 39.9% 16.0% 0.0% 57.0%
b cpu_6 0.097s 528,000,000 0 ‘NEZUU,DDU 0.782 1.2% 2.3% 84.9% 11.6%
» cpu_11 0.011s 70,400,000 0 Em 00g o 51.5% 10.3% 38.2% 0.0%
» E-Core 3.405s | 0 12,364,800,000 12,848,000, 00 0.0% 0.0% 100.0% 0.0%
I Thread (TID: 11900) 7387s | 19.,542,400,000 11,942,400,000 37.897,600.000 24 8% 16.6% 18.2% 38.4%
b Thread (TID: 12652) 7.320s | 19,164,800,000 12,224,000,000 37,398,400.000 0.839 22.5% 17.8% 16.5% 43.2%
b Thread (TID: 12416) 7.354s | 19,459,200,000 11,795,200,000 37,123,200,000 0.842 24.7% 20.2% 12.3% 42.8%
I Thread (TID: 14816) 7403s | 19,193,600,000 12,054,400,000 37.225,600.000 0.839 24.7% 20.3% T1% 47.9%
b Thread (TID: 14984) 7304z | 19,158,400,000 12,064,000,000 36.828,800.000 0.848 24.9% 20.9% 6.4% 47 8%
- Thread (TID: 14060) 7.190s | 19,270,400,000 11,938,200,000 37.468,800,000 0.833 24.8% 19.6% 8.6% 47.0%
b Thread (TID: 14812) 7.352s | 18,972,800,000 12,192,000,000 37,568,000,000 0.830 23.1% 16.2% 16.3% 42.4%
I Thread (TID: 14456) 72935 | 18,883,200,000 12,227,200,000 37.,148,800.000 0.837 24 8% 19.0% 6.0% 50.1%

P-Core E-Core

Million Million Relative Frequency”*
1

P-Core e-Core Instruction Instruction instructions Pl
Thread ThreadiD CPI CPl s/Second s/Second persecond

Threads more efficient
on
P -Cores

Render 9496 5210.81

1664.37

Game ELI9N 167] 2.68] 2894.89| 1350.75 0.47

Worker 1 3 0.79| 0.99| 6140.13| 3663.97 0.60| ST

efficienton
P -Cores

Worker 2 13648 0.79] 0.95| 6093.55| 3826.64 0.63

Streamer 14092 1.38] 1.25(3487.70(2907.63 0.83 Memorylinar AR

type doesn't matter

Audio 13640 1431 1.23| 3370.63| 2935.93 0.87

8C/16T Hybrid

Thread Hybrid Symmetric ~ Hybrid vs
ID P-CoreCPl P-CoreCPI Symmetric

Render 9496

Game 13964
Worker 1 416
Worker 2 13648
Streamer 14092
Audio 13640

Ewvent Count

0 HOtSpOtS - + Grouping: | (custom) Process / Thread / EHFI Class / Function ~ | IEI
ldentify the most time consuming functions and drill down 1o see time Proeess / Thread [EHFI Class / Function INST RETIRED ANY ¥ CPU CLK UNHALTED THREAD CPU CLK UNHALTED REF TSC TOPDOWMN SLOTS |
spent on each line of source code. Focus optimization efforts on hot -
= engine exe 65.504.443,155 76.134.643,063 46.152.097,355 329.550,.572,106
w Thread (TID: 13400) 14.286,760.769 13.468,372.321 8.544.3886,686 70.423,935,786
User-Mode Sampling & Overnead » Class_0 13.800,426,031 12 992 552,409 8.228.221,531 68.702,741,242
» [Unknown] 222,837,646 287.357.399 205,385,301 1.041.715,500
Hardware Event-Based Sampling @ > Class_-1 201,442,896 133,762,674 59,296,362 514,575,390
CPU sampling interval, ms = Invalid 62,054,196 54,699,209 51,485,492 64,902,654
» Thread (TID: 9504) 10.267.2686,061 18.236.731.611 11.605.252,115 95.224, 462,340
1 » Thread (TID: 14384) 3.465,454,988 3.221.403,373 2.050,200,749 11.322,391.648
w Thread (TID: 13304) 3.383.869.757 3.176.617.216 2.070.288,141 11.377.148,482
Collect stacks > Class_0 2.380.543,135 2.047.458,888 1.190.506,850 9.916.572,216
Show additional performance insights = [Unknown] T36.710.202 853,654,401 660,331,012 1.182.955.118
» Invalid 248,436,538 238,707,401 206,268,966 102,261,584
> Class_1 18,179,182 26.797.226 12,181,313 175,359,564
Details » Thread (TID: 10888} 3.319 751.640 3172 733 316 2 074,951 363 11,017 702 AFE
D e — e e F1esm= 2200ms 2z03ms 3210ms 2215ms 2zz0ms. 2z225ms [Thread ~
Thread (TID: 9504} H Bl Running

Context Switches
Thread (TID: 13400} 1 Preemption

Thread (TID: 14384) [1 Synchronization

o
Thread (TID: 13304) '| L [Hardware Event Count
FPGA no temporal Thread (TID: 15244) | - i I = EHFI Class 0
"
|
1

Thread

FPGA no memory transfers Thread (TID: 10888) I == EHFI Class 1

(ImT 1] — EHEI Class 2
L0 Metric Config Thread (TID: 3412) J:._[I = EHFI Class 3
Thread (TID: 3860) (] == EHFI Class Invalid
Thread (TID: 11368)

s
=3

(O | Hardware Event Type ~

L0 Sampling Type

Time based - ULr=mE] (e TSRl paused paused paused paused
Thread (TID: 8732)
L0 Metric Sampling Interval el e o0
1 Thread (TID: 8940)
Event mode Thread (TID: 113838)
Al - Thread (TID: 1572} | I
~| Collect context switches Thread (T1D: 5024) I I

Use precise multiplexing

Thread (TID: 5384) |
I

Collect CPU frequency data Thread (TID: 7084) I
Profile with Hardware Tracing . — —
Analyze EHF ciasses [Aisee 1 heeo= | [Aw F-moess!.v Any Thread ___~| [Any Moduls ~] || [User functions + 1 ~ | [Functions only ~ ||| Show inlins fun ~ | |

Thread {TID: 8756} | I
—

16 workers 66% on e-cores

16 workers 50% on e-cores

FRAMETI

~
()
b3
S
LU
2
=
Z
2
(14
X
[
O
=

200000

150000

100000

50000

0

Average FrameTime (ms)

i9-13900K (8+0) i9-13900K (8+16)
HARDWARE CONFIG

Runtime by Core Type

P-Core(ms) E-core(ms)

Background

o
c
5
<4
o)

X
S
Jof

o

%TotalCPU

} Backcjround Threéds

14 Physics Threads

14 worker Threads
I
80

Thread

On symmetric system, priority @ threads spend 50%©

P15 Threads

P11 Threads

NewThreadld CPU Usage

P10 Threads

P9 Threads

* (PUUsage (Precise) Timeline by Process, Thread * + P Y @

Series

b g4 m - I
0y]

boo1,948 | I |

b 15036 | []

b 619% m]

boo17784 m 1 I

b6 m | I N . .

boo2082] |

boo11,628 | 1 '

b 1623 m Il

b 16,208 . [

b 15636 m I I N

boo8132] |

boo14332 | I I N

b 64T - |

bo12272 . |

poo13,100 . |

bo16,3%] 1 I E

boo5240 | |

P88 | I

boo14844 . [

b7 m 11|

boo12828] .

() | [

b 18276 .]

b 14984 - [

b 18376 . |

P12] I

boo15502] I

Po3820 . [

bo18148 m I I

boo1,824 .., 1 I

e
54280 54285 SR A310 54315 54320 54325 4330 54335 54340 54345 54350 54355 54360 54365

Thread 16,832 running on e-core

8% slower with E-C

6.77
6.29

Two issues to investigate:

» Longrunningthread on E-Cores

» Thread-pool wall time increasing on

Thread creation based on logical processor count

metric_CPI 2.3365 1.5610

48.6328 235164

Thread Duration by Core Type

Histogram:%(Count/Thread CSwitches)

1312 YAV 15760 10760 4168 1880

0.10ms(CS%) m0.50ms(CS%) M 2.00ms(CS%) ' 5.20ms+(CS%)

13112 5212 15760 10760 4168 1880

<8(Priority) m 8(Priority) ™ 9(Priority) = 10(Priority)
11(Priority) ™ 12(Priority) 13(Priority)

Thread 13,112 context switches mid frame

Thread 5,212 waits on thread 13,112

When processor selection goes bad...

Frame
stutter

Expected
behavior

Frame
stutter

Why 35ms?

Thread switch at guantum
end —
threads never yield

Producer and consumer threads serialised onto core 16 v rer— R —_—

A

18,612 P DelayExecution
2,776 WrQuantumEnd
17,648 WrQuantumEnd

8,384 DelayExecution
15,420 UserRequest
18,168 WrQuantumEnd
12,076 WrQuantumEnd

Games is affinitizing to e-cores for Al
Most E-Cores are parked Only core 16 is fully unparked

New thread ready to run

No
remaining
LP’s

Attempt to Unpark
OS Selected LP

Unable to unpark
Or new core unsuitable

Select an active processor, using
Ideal processor
Last processor
OS with Thread Director Feedback

Thread is > priority than
current N o

Add to end of Rdy Queue

Does the OS have Idle
Processors

Yes

Prune away based
on Thread Affinities

Yes

Prune out
Parked LP’s

OS didn't unpark additional LP’s

Only active LP inside affinity mask
was LP16

Serialised threads on RDY
queue

Closing Thoughts

Profile your workload

* Use QueryPerformanceCounter() for micro-benchmarking
» Use Intel® VTune™ Profiler for in-depth CPU performance analysis

Don't oversubscribe your thread pool

* Don'tuse hyperthread cores if your workload can't benefit from hyper-threading

* Avoid unnecessary context switches and cache flushes

Use Quiality of Service APIs for OS and Intel” Thread
Director optimizations

* QoS APIs can be used in combination with Static Partitioning APIs based on
application architecture

Avoid static partitioning; allow cores to steal work from
other cores

* Work stealing allows idle threads to take tasks from cores that
may be overworked, increasing throughput

Avoid pinning threads to a single logical
processor

Avoid scheduling lower priority tasks on the same
cores as your critical path

Understand how your middleware uses
threads

http://www.intel.com/PerformanceIndex

intel

Optimizing Software for x86
Hybrid Architecture

White Paper

October 2021

Revision 1.0

Link [~

Documen t Number: 348851-001US

https://www.intel.com/content/dam/develop/external/us/en/documents-tps/348851-optimizing-x86-hybrid-cpus.pdf

