
Programming for Hybrid:
Untangling your Threads

Leigh Davies
Senior Game/Graphics Application Engineer

03/2023

2 Presentation footer

OS Scheduling

Data Capture

Case Studies

Closing Thoughts

Introduction

3

What is a Hybrid SOC (System On a Chip)?
Intel Hybrid Architecture

Cove

Performance
Core

Mont

Efficient
Core

Performance
Hybrid

S
T

 P
e

rf
o

rm
a

n
c

e
/L

at
e

n
c

y
MT Performance/Throughput

▪ Concentrate on single
and limited threading
scenarios

▪ Performance intensive

Performance
Cores

▪ Concentrate on MT
throughput and power
limited scenarios

▪ Efficiency focused

Efficient
Cores

▪ Two core types with different power and performance
characteristics

▪ Both core types have the same ISA support

▪ No AVX512, TSX

▪ New AVX-VNNI , UMWAIT/TPAUSE

Combines Performance Cores and
Efficient Cores

4

What is a Hybrid SOC (System On a Chip)?

▪ Two core types with different power and performance
characteristics

▪ Both core types have the same ISA support

▪ No AVX512, TSX

▪ New AVX-VNNI , UMWAIT/TPAUSE

Combines Performance Cores and
Efficient Cores

▪ Concentrate on single
and limited threading
scenarios

▪ Performance intensive

Performance
Cores

▪ Concentrate on MT
throughput and power
limited scenarios

▪ Efficiency focused

Efficient
Cores

L3(LLC)

P-Cores have their own L2 caches, and E-Cores
share L2 caches in groups of four.

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2

E-Core E-Core

E-Core E-Core

L2

E-Core E-Core

E-Core E-Core

Intel Hybrid Architecture

5

Intel® Thread Director (HGS+)

Dynamically adapts guidance
based on the thermal design point, operating conditions,
and power settings – without any user input

Provides runtime feedback to the OS
to make the optimal scheduling decision for any workload
or workflow based on ISA and other inputs

Monitors the runtime instruction mix
of each thread and as well as the state of each core – with
nanosecond precision

Hardware unit
Intelligence built directly into the core

0

2

4

6

8

0 1 2 3

S
c

o
re

Core power(W)

spec int 17 ST PnP ULX

spec17 int rate GRT 1c spec17 int rate GLC 1c ST

Intel® Thread Director requires 12th gen Intel® Core™ performance hybrid architecture and OS enablement. Available features and functionality will vary by OS

6

CPU Specs Progression

Lithography

P-cores

Base Freq

Max Turbo Freq

L1 D$ / I$

L2 U$

L3 U$

Max Mem Size

Mem Type

Mem B/w

E-cores

L2 U$ (4x E-core)

FEATURES

✓ 14 nm

✓ 8/16

✓ 3.5 GHz

✓ 5.3 GHz

✓ 48 / 32 KB

✓ 512 KB

✓ 16 MB

✓ 128 GB

✓ DDR4-3200

✓ 50 GB/s

✓ 0

✓ N/A

ROCKET LAKE
(i9-11900k)

✓ Intel 7

✓ 8/16

✓ 2.4 GHz

✓ 5.2 GHz

✓ 48 / 32 KB

✓ 1280 KB

✓ 30 MB

✓ 128 GB

✓ DDR5-4800

✓ 76.8 GB/s

✓ 8

✓ 2048 KB

✓ Intel 7

✓ 8/16

✓ 3.0 GHz

✓ 5.8 GHz

✓ 48 / 32 KB

✓ 2048 KB

✓ 36 MB

✓ 128 GB

✓ DDR5-5600

✓ 89.6 GB/s

✓ 16

✓ 4096 KB

Efficient Cores are

comparable to earlier

generation Performance

Cores

ALDER LAKE
(i9-12900k)

RAPTOR LAKE
(i9-13900k)

Disclaimer
• SPECrate2017_int_base estimates using an open source compiler, iso-binary For workloads and configurations visit

www.intel.com/ArchDay21claims. Results may vary.

7

Hyper-Threading Recap

P-core
No- SMT

P-core
SMT

Time proc cycles

Context Switch

Important for later in the talk…..
Hyper-Threading (Simultaneous Multi-Threading)

Load

Store

:

Add

Resource 1

Resource 2

Resource 3

Resource 4

Resource 1

Resource 2

Resource 3

Resource 4

E-core

Latency deltas
for task 1 (blue)
completion

“E-cores are designed to provide better
performance than a logical P-core with both
hardware sibling hyper-thread busy.”

SMT and instruction throughput

▪ Improves Core CPI (Clockticks Per Instruction)

▪ Potential degrades Thread CPI

Each box represents a processor execution unit

L3(LLC)

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)

P-Core

L2 (MLC)
L2

E-Core E-Core

E-Core E-Core

L2

E-Core

E-Core E-Core

Data caches

Arch State Arch State

CPU
front-End

OOO
Execution

Engine

8

Changing Our Assumptions …

All cores have the same performance profile

▪ Significant performance delta between cores

▪ Same ISA != same throughput

All cores have the same frequency

▪ There may be one, two, or more, faster cores

▪ The fastest core may move around the
package

Hyper Threading doubles the physical core count

▪ Hyperthreading may be available on only some
cores in a package

▪ Logical core count may not equal 2x physical
core count

Optimizing the CPU only matters if CPU Bound

▪ Power may be shared between
GPU/CPU/Other -> frequency impact

9

CPU Topology

All cores exposed to OS as individual Logical
Processors using;

Preferred Enumeration method:

GetLogicalProcessorInformationEx()

▪ struct _PROCESSOR_RELATIONSHIP:

▪ Field: EfficiencyClass; << Higher mean more perf

▪ Note: This is relative to other logical processors in the system.

▪ For 12th/13th Gen Intel Core EfficiencyClass=1 is P-Cores.

▪ struct _CACHE_RELATIONSHIP:

▪ Field: Level << The cache level

▪ Field: Type << The cache Type (Data, instruction, etc)

▪ Field: GroupMask.Mask << LP’s connected to the cache

▪ Note: Even cores with the same EfficiencyClass can have different cache
configurations.

Pseudo Code

Typedef pSLPI_EX SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*;
uintptr_t affinity;

if (GetLogicalProcessorInformationEx(RelationAll, (pSLPI_EX)&buffer[0], &size))
{

for (size_t i = 0; i < size;)
{

SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX* procInfos = (pSLPI_EX) &buffer[i];

switch (procInfos->Relationship)
{

case RelationProcessorCore:
{

for (uint32_t g = 0; g < procInfos->Processor.GroupCount; ++g)
{

LPNumber = BitScan(procInfos->Processor.GroupMask[g].Mask);
LPClass = procInfos->Processor. EfficiencyClass;

}
}break;

case RelationCache:
{

cache.m_ProcessorMask = procInfos->Cache.GroupMask.Mask;

}break;
}
i += procInfos->Size;

}
}

10

Introduction

Data Capture

Case Studies

Closing Thoughts

OS Scheduling

11

Thread Scheduling

No central scheduler

▪ Scheduling routines are called whenever events occur that change the state of a thread

▪ Example scheduling events include:

▪ A thread becomes ready to execute (newly created or released from wait state)

▪ A thread enters a wait state or ends

▪ Interval timer interrupts

▪ Other hardware interrupts (for I/O wait completion)

▪ Quantum End

▪ A thread priority is changed

▪ Thread QoS changes

▪ System concurrency/utilization changes (causing parking)

▪ Intel® Thread Director updates

12

Scheduling Priorities
▪ A process has only a single base priority value

▪ Each thread has two priority values: current (Dynamic) and base

▪ Scheduling decisions are made based on the current priority

▪ The system under certain circumstances increases the priority of threads in the dynamic
range (1 through 15) for brief periods

Relative Priorities

Priority Class Relative Priority

Real time High
Above
Normal

Normal
Below

Normal
idle

THREAD_PRIORITY_TIME_CRITICAL 31 15 15 15 15 15

THREAD_PRIORITY_HIGHEST 26 15 12 10 8 6

THREAD_PRIORITY_ABOVE_NORMAL 25 14 11 9 7 5

THREAD_PRIORITY_NORMAL 24 13 10 8 6 4

THREAD_PRIORITY_BELOW_NORMAL 23 12 9 7 5 3

THREAD_PRIORITY_LOWEST 22 11 8 6 4 2

THREAD_PRIORITY_IDLE 16 1 1 1 1 1

13

Thread Scheduling
To improve scalability Windows 8+ added Shared
Ready Queues: Reduce contention on Ready Queue.

P1

T1 T2

P2

31

0

Ready summary

31 0

31

0

Ready summary

31 0

Group 1
(CPU 0,1,..)

Ready-Queues

Group 2
(CPU 8,9..)

Ready-Queues

T3

T4 T5 T6

Priority driven, preemptive

▪ Ready Queue consist of;

▪ 32 queues (FIFO lists) of “ready” threads

▪ UP: Highest priority thread always runs

▪ MP: One of the highest priority runnable thread will be
running somewhere

▪ Threads run for an amount of time called a quantum

▪ Can be cut short due to preemption by higher priority
thread

▪ The system treats all threads with the same priority as
equal

▪ No attempt to share processor(s) “fairly” among
processes, only among threads

Current Hybrid systems have up to 8 LPs per group

14

Scheduling Scenarios: On wake
On wake

▪ If newly-Ready thread is
not of higher priority than
the Running thread…

▪ …it is put at the tail of
the Ready queue for its
current priority

▪ If priority >=14 quantum is
reset .

▪ If priority <14 and you’re
about to be boosted
and didn’t already have
a boost, quantum is set
to process quantum - 1

18
17
16
15
14
13

Running Ready

from Wait state

15

Scheduling Scenarios: Preemption
Preemption

▪ A thread becomes Ready
at a higher priority than
the running thread and all
processors are busy

▪ Lower-priority Running
thread is preempted

▪ Preempted thread goes
back to head of its Ready
queue

▪ Action: pick lowest
priority thread to
preempt

18
17
16
15
14
13

Running Ready

from Wait state

16

Scheduling Scenarios: Voluntary switch
Voluntary switch

▪ Waiting on a dispatcher
object

▪ Termination

▪ Explicit lowering of
priority

▪ Action: scan for next
Ready thread (starting
at your priority & down)

Current Hybrid systems have up to 8 LPs per group

18
17
16
15
14
13

Running Ready

to Waiting state

17

Scheduling Scenarios: Quantum End
Running thread experiences
quantum end

▪ Priority is decremented
unless already at thread
base priority

▪ Thread goes to tail of
Ready queue for its new
priority

▪ May continue running if
no equal or higher-priority
threads are Ready

▪ May migrate to
ANOTHER LPs ready
queue and start running
thereafter

• Action: pick next thread
at same priority level

18
17
16
15
14
13

Running Ready

18

Priority Boosts
Windows periodically adjusts the current dynamic
priority of threads, reasons include: Boost Decay over Time

▪ Scheduler/dispatcher events:

▪ An event is pulsed

▪ A mutex/semaphore was released/abandoned

▪ A timer was set

▪ Other hardware interrupts

▪ Has been in the ready queue a long time

▪ A thread was alerted/suspended/resumed…

Behavior of these boosts:

▪ Applied to thread’s current priority will not take you above
priority 15

▪ After a boost, you get one quantum Then decays 1 level,
runs another quantum

Base
Priority Run Wait Run Run

Quantum

Boost Upon
Wait Completion

Priority Decay
At Quantum end

Round Robin at
Base priority

Pre-empt
(before quantum end)

P
ri

o
ri

ty

Time

Priority (%)

ThreadID TotalCPU% <8 8 9 10 11 12 13 14 15 >15

5048 96.61 0 0 0 0 2.46 86.26 0.96 2.93 0 0

Thread Base Priority

19

Intel® Thread Director Background

Thread Scheduling Overview Windows 11+ Only

▪ Processors that support x86 hybrid architecture are
categorized on their performance and efficiency.

▪ Intel Thread Director provides a hint to the os as to the
thread that will benefit most from placement on a specific LP

▪ This hint is used within the same or lower QoS/Priority
threads.

▪ HW periodically writes a feedback table (EHFI)

Class based

on how

instruction

mix scales

between P

and E-Cores

20

Intel® Core™ Processor Windows
Scheduling/Parking Background

Windows Core Parking Engine
Power Management Settings related to Scheduling /
Parking: Varies by power plan.

▪ Makes global scalability decisions about the workload and
determines the optimum set of compute cores for execution.

▪ Max Turbo vs All core frequency

▪ Enhance battery life

▪ Prioritize shared resources

▪ Etc….

CPMinCores: Specifies the minimum percentage of logical
processors that can be unparked state at any
given time.

CPMaxCores: Specifies the maximum percentage of logical
processors that can be unparked state at any
given time.

CPIncreaseTime: The minimum time that must elapse before
additional logical processors can be transitioned
from the parked to the unparked state.

CPDecreaseTime: The minimum time that must elapse before
additional logical processors can be transitioned
from the unparked to the parked state.

CPHeadroom: Specifies the additional utilization that would
cause the core parking engine to unpark an
additional parked logical processor

21

Single Thread Scenario

▪ The following example shows Windows leveraging an Intel core for single thread performance.

▪ This behavior is dynamically achieved when Logical Processor (LP) 0 has the highest
performance capability.

Example combination of P-cores and E-cores

E-Core E-Core

E-Core E-Core

E-Core E-Core

E-Core E-Core

P-Core P-Core P-Core P-Core

LP0 LP1 LP0 LP1

T1

22

E-Core E-Core

E-Core E-Core

E-Core E-Core

E-Core E-Core

P-Core P-Core P-Core P-Core

LP0 LP1 LP0 LP1

Limited Threaded Scenario
▪ The following example shows an example scheduling behavior in a limited software thread scenario.

▪ This behavior is dynamically achieved by the Windows scheduler/parking engine when P-Cores are more
performant than the E-Cores. E-Cores are more performant than the SMT sibling of a busy core.

▪ When the capabilities dynamically change, Windows automatically accounts for this for optimal scheduling

▪ Favored core priority given to focus application threads, high priority or long duration threads

Example combination of P-cores and E-cores

T1 T2

T3 T4

23

E-Core E-Core

E-Core E-Core

E-Core E-Core

E-Core E-Core

P-Core P-Core P-Core P-Core

LP0 LP1 LP0 LP1

▪ All cores are used by Windows in multithread scenarios

▪ In power/thermal constraint scenarios, there may be times when all cores aren’t used for optimal system
performance/efficiency.

▪ The behavior is dynamically achieved by hardware providing feedback to Windows, and Windows
automatically acting on that feedback.

Multi Threaded Scenario

Example combination of P-cores and E-cores

P-Core

T1 T2

T3 T4T5 T6

T7 T9 T8 T10

T11 T12

24

E-Core E-Core

E-Core E-Core

E-Core E-Core

E-Core E-Core

▪ In certain scenarios like low power envelope SKUs or better battery life goals, it can be more efficient to
run low utilization work on cores with higher efficiency capability at efficient frequency

Low Power Scenario

Example combination of P-cores and E-cores

T1

P-Core P-Core P-Core P-Core

LP0 LP1 LP0 LP1

25

Simplified Processor/Ready Queue Selection

Does the OS have
Idle Processors

Select a processor, using
Ideal processor
Last processor

SMT Sibling usage
OS withThread Director Feedback

Assign to front of
Ready Queue

Select an active processor, using
Ideal processor
Last processor

OS with Thread Director Feedback

Thread is > priority
than current

Add to end of Rdy
Queue

NoYes

Pre-empt

Every thread has base “ideal processor” system

at thread creation. Can override with:

Dynamically adjusted by OS/Thread Director

SetThreadIdealProcessor (HANDLE hThread,DWORD

dwIdealProcessor);

Prune away based
on Thread Affinities

No remaining LP’s

No Idle LP’s

LP’s Available

New LP

Available

New thread ready to run

Prune out
Parked LP’s

Yes

Yes

Attempt to Unpark
OS Selected LP

No remaining LP’s

Unable to unpark Or new core unsuitable

26

Software Enabling for Hybrid

▪ Most performant core
used first are used first
for single-thread &
multi-thread
performance

▪ Spill over multi-
threaded work uses
additional physical for
MT-performance

▪ SMT siblings are used
last to avoid any
contention impacting
performance

OS scheduler will try to
assign work based on:

OS scheduler will move threads based on their priority, QoS and performance/efficiency HW metrics

▪ OS will park inactive and
lightly utilized logical
processors.

▪ Saves power, or higher
frequencies for running
processors.

▪ Recent changes have
made the OS more
aggressive at parking
for DC scenarios.

▪ AC scenarios are
different due to
softparklatency tunings

Core Parking

▪ Use OS Hints for soft
affinity

▪ Any ISV code providing
affinity could potentially
see perf degrades as OS
cannot override the
decision

▪ QoS,
SetThreadIdealProcessor
help determine where the
OS will queue a thread to
run.

▪ CPUSets API. This API
takes HGS do not use hints
into account and breaks
affinity

Avoid Hard Affinities

▪ Not all workloads scale with
increased core count

▪ Increased threads add
overhead in context switches/
synchronization APIs,
reduced cache and shared
hardware resources

▪ Scale thread count based on
workload benefits

▪ GetLogicalProcessorInformationEx

▪ To scale application based on best
fit to hardware

Workload Scalability

Online resource: Game Dev Guide for 12th Gen Intel® Core™ Processor

https://www.intel.com/content/www/us/en/developer/articles/guide/12th-gen-intel-core-processor-gamedev-guide.html

27

Introduction

OS Scheduling

Case Studies

Closing Thoughts

Data Capture

28

Profiling Hybrid Games

• CPI

• Cache

• Thread Director

VTune 2022

VTune Download

WPA

• SMT Usage

• Concurrency

• OS Behaviour

Windows SDK Github://Presentmon

Windows SDK

GPU/CPU

Concurrency

FREE

https://learn.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://developer.amd.com/wordpress/media/2012/10/Using%20GPUView%20to%20Understand%20your%20DirectX%2011%20Game.pps

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.o4t7l6
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://github.com/GameTechDev/PresentMon
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/

29

Thanks to IO
Interactive

• Example data collected
from Hitman 3.

• Reproduced with
permission from IO
Interactive.

• Used to show profiling
data only, title interacts
with well with the OS.

30

CPU or GPU Bound?

▪ When idling waiting on the GPU the CPU will drop into lower C-states: Lowers
CPU performance

▪ Changes thread concurrency

▪ Frame latency hides scheduling issues

GPU bound will affect
timings of CPU threads

➢ < presentmon –track_gpu –captureall –

multi_csv –timed 20 –terminate_after_timed >

Or

• Capture with
➢ <Windows Performance Toolkit/GPUView/

log.cmd light >

• View merged.etl in GPUView

• Post process with
➢ < presentmon –track_gpu

–etl_file merged.etl –multi-csv >

Capture timings with PresentMon: PresentMon output

msBetweenPresents
= CPUtimgs

msUntilDisplayed
= Display Latency

msGPUActive
= GPU Timing

31

Viewing GPU Data

Simple to plot timings from PresentMon

GPU 1ms faster than CPU

Big CPU frame time
variations

Areas of interest: Possible
IO stalls, memory paging

32

Viewing GPU Data

GPUView

Graphics Queue

Compute Queue

Main Thread

Worker Threads

GPU Stall

33

Understanding Concurrency

1ms Sampling
0

5

10

15

20

0
… 1… 2
…

3
…

4
…

5
…

6
…

7
…

8
…

9
…

10
…

11
…

12
…

13
…

14
…

15
…

16
…

17
…

18
…

19
…

2
0

…

2
1…

2
2

…

2
3

…

2
4

…%
 T

O
T

A
L

 R
U

N
T

IM
E

SIMULTANEOUS ACTIVE THREADS

System Concurency

P-Cores Only P+E-Cores P+E-Cores +SMT

WPA: Timeline by Process, Thread

CPU Concurrency:

Number of simultaneous active threads at and point
in a frame.

Xperf/WPA:

Precise view, tracks kernel events in ETL files.
Provides a fine-grained view of individual threads.

Sampled concurrency views like VTune don’t
provide enough detail on concurrency at the OS
event level.

34

Understanding WPA (1/5)

▪ Computation

▪ CPU Usage

▪ Timeline by Process, Thread
(Precise) ←Track events rather than using sampling

A lot of customisable views into OS/hardware level data

Thread-level timings

35

▪ Power

▪ Processor Utility

▪ Processor Frequency
View Type Actual

Understanding WPA (2/5)

Hardware frequency including turbo

A lot of customisable views into OS/hardware level data

36

Understanding WPA (3/5)

▪ Power

▪ Processor Parking State

Logical processor state

A lot of customisable views into OS/hardware level data

37

▪ Generic Events
▪ Sorted by Service Provider
▪ Microsoft-Windows-DirectD3D12
▪ Microsoft-Windows-Kernel-Processor-Power
▪ Microsoft-Windows-DXGI

Understanding WPA (4/5)

Useful to track where GPU commands are issued

A lot of customisable views into OS/hardware level data

38

Thread Timeline

Understanding WPA (5/5)

Multiple views use same zoom/easy to align data

Core Parking

DX12 Events

39

Thread Execution

https://devblogs.microsoft.com/performance-diagnostics/wpa-intro/

Sort By CPU Usage (Sum)

Breakdown thread execution time by Core type
Long duration threads should favour Performance cores
WPA Tabled can be copied to Excel and graphed.

CPU :Timeline by Process, Thread

Add Cpu + CPU Usage(ms) Sum

40

Thread Execution

https://devblogs.microsoft.com/performance-diagnostics/wpa-intro/

0 5000 10000 15000 20000

13968

14880

16124

16320

6296

8944

14524

11004

10712

15296

15156

13356

12328

12768

Thread Duration by Core type

P-Cores(ms) E-Cores(ms)

CPU :Timeline by Process, Thread

Add Cpu + CPU Usage(ms) Sum

41

Thread Ready/Wait times

Custom format doesn’t

change the column header

on some versions of WPA

CPU Usage (Precise)

▪ Add CPU usage to table

▪ Move Ready & Wait up the table

▪ Reformat units

P1

T1 T2

P2

31

0

Ready summary

31 0

31

0

Ready summary

31 0

Group 1
(CPU 0,1,..)

Ready-Queues

Group 2
(CPU 8,9..)

Ready-Queues

T3

T4 T5 T6

Are threads efficiently scheduled?

How long do they wait and is the OS able to schedule them?

42

Thread Ready/Wait times

Time in Shared Ready queue Time thread is in wait state Max Ready Queue

Longest wait

Thread
Job

New
ThreadId

CPU Usage
(ms)

Ready (ms)
Sum

Waits (ms)
Sum

Count
Ready (us)

Max
Waits (us)

Max
Count:
Waits

Render 7444 20125.96 43.94 749.32 9226 381.3 50467.6 5044

Game 11256 19926.66 62.12 831.01 37873 426 3319.6 27374

Worker 1 10376 8285.756 240.84 12276.28 75037 692.7 10014.7 71946

Worker 2 10852 8233.223 237.80 12327.32 76566 762.7 10017.6 73448

Worker 3 7976 8213.791 254.07 12326.72 75698 526.4 10013.5 72006

Non Hybrid System

P1

T1 T2

P2

31

0

Ready summary

31 0

31

0

Ready summary

31 0

Group 1
(CPU 0,1,..)

Ready-Queues

Group 2
(CPU 8,9..)

Ready-Queues

T3

T4 T5 T6

43

Hybrid System

New
ThreadId

CPU Usage
(ms)

Ready (ms)
Sum

Waits (ms)
Sum

Count
Ready (us)

Max
Waits (us)

Max
Count:
Waits

Render 13968 20147.11 19.88 627.40 6731 136.2 6593.4 5225

Game 5048 20084.29 65.55 645.93 29891 125.1 2785.3 26094

Worker 1 13324 7927.543 489.20 12406.89 67058 344.7 18072.9 63135

Worker 2 14880 7589.991 714.03 12529.15 65649 334.2 17040.8 62649

Worker 3 16312 7570.553 707.25 12547.99 66215 259.9 18143.7 63147

Thread
Job

New
ThreadId

CPU Usage
(ms)

Ready (ms)
Sum

Waits (ms)
Sum

Count
Ready (us)

Max
Waits (us)

Max
Count:
Waits

Render 7444 20125.96 43.94 749.32 9226 381.3 50467.6 5044

Game 11256 19926.66 62.12 831.01 37873 426 3319.6 27374

Worker 1 10376 8285.756 240.84 12276.28 75037 692.7 10014.7 71946

Worker 2 10852 8233.223 237.80 12327.32 76566 762.7 10017.6 73448

Worker 3 7976 8213.791 254.07 12326.72 75698 526.4 10013.5 72006

Non Hybrid System

Thread Ready/Wait times
Hybrid system has:

▪ Smaller Wait time for main 2 threads

▪ Less Ready time on Render thread

Less context switches for

all main threads

Smaller max. Ready time

Ideally compare against 2

systems

▪ i.e. Intel i9-12900K

▪ e-cores on vs off in bios

P1

T1 T2

P2

31

0

Ready summary

31 0

31

0

Ready summary

31 0

Group 1
(CPU 0,1,..)

Ready-Queues

Group 2
(CPU 8,9..)

Ready-Queues

T3

T4 T5 T6

44

Understanding Context switches

Context Switch is the process of changing
the active thread on a processor.

Overhead of changing architecture state

▪ Capture with log.cmd normal

▪ Load symbols (MSFT symbol server)

▪ Add NewThreadStack to table view

NewThread
Stack

The stack of the new thread when it is
switched in. Usually indicates what the
thread was blocked or waiting on.

Quantum End
call stack ends in normal

game code

Yield
call stack ends in

tasking system SleepEx

45

Intel® VTune™Profiler
Advanced sampling profiler allows you to quickly identify CPU bottlenecks
causing slow frames and tasks.

Hotspot Analysis: Identifies
functions consuming the

most CPU time

Thread Performance: Visualizes
thread behavior to quickly

identify concurrency problems

Instrumentation API: Extensive
API enables frame and task

markup for better results

46

Finding Architectural Issues

Configure VTune™ for microarchitecture analysis: Small sampling internal.

Can be run from command-line if
preferred, minimal overheads.
Embed into application using a
hotkey?

Virtualization based security limits VTune™ collection, disable for
collection of microarchitecture events.

47

Useful VTune Metrics
Metric Description

CPI Rate
Cycles per Instruction Retired, or CPI, how much time each executed instruction took, in units of cycles. Modern
superscalar processors issue up to four instructions per cycle, suggesting a theoretical best CPI of 0.25.

Cache Bound
This metric shows how often the machine was stalled on L1, L2 and L3 caches.
This metric also includes coherence penalties for shared data.

Contested
Accesses

Contested accesses occur when data written by one thread is read by another thread on a different core.
Examples of contested accesses include synchronizations such as locks, true data sharing such as modified
locked variables, and false sharing.

Back-End
Bound

Back-End Bound metric represents a Pipeline Slots fraction where no uOps are being delivered due to a lack of
required resources for accepting new uOps in the Back-End

Front-End
Bound

Front-End Bound metric represents a slots fraction where the processor's Front-End undersupplies its Back-End

Data Sharing
Data shared by multiple threads (even just read shared) may cause increased access latency due to cache
coherency.

Memory
Bound

This metric shows how memory subsystem issues affect the performance. Memory Bound measures a fraction of
slots where pipeline could be stalled due to demand load or store instructions.

48

Microarchitecture by Core Type
Import results into VTune UI, use a custom grouping to sort thread activity into core type.

Bottom-up:
▪ Custom grouping ()

49

Relative Thread Perf. by Core Type

Thread Thread ID

P-Core

CPI

e-Core

CPI

P-Core

Million

Instruction

s/Second

E-Core

Million

Instruction

s/Second

Relative

instructions

per second

Render 9496 0.93 2.18 5210.81 1664.37 0.32

Game 13964 1.67 2.68 2894.89 1350.75 0.47

Worker 1 416 0.79 0.99 6140.13 3663.97 0.60

Worker 2 13648 0.79 0.95 6093.55 3826.64 0.63

Streamer 14092 1.38 1.25 3487.70 2907.63 0.83

Audio 13640 1.43 1.23 3370.63 2935.93 0.87

Frequency*
1

𝐶𝑃𝐼

Threads more efficient
on

P -Cores

Threads slightly more
efficient on

P -Cores

Memory limited, core
type doesn’t matter

50

Relative Thread Perf. by Core Type

Thread

ID
Hybrid

P-Core CPI

Symmetric

P-Core CPI

Hybrid vs

Symmetric

Render 9496 0.925 0.991 1.07

Game 13964 1.665 1.714 1.03

Worker 1 416 0.785 0.888 1.13

Worker 2 13648 0.791 0.904 1.14

Streamer 14092 1.382 1.415 1.02

Audio 13640 1.43 1.395 0.98

*****SMT Statistics***** *****SMT Statistics*****

8C/16T Hybrid

Core ID
Both Siblings

Idle
Both Siblings

Active
Core ID

Both Siblings
Idle

Both Siblings
Active

Percentage Percentage Percentage Percentage

LP0 & LP1 44.94 29.75 LP0 & LP1 45.44 20.34

LP2 & LP3 43.19 34.73 LP2 & LP3 31.47 23.08

LP4 & LP5 42.18 36.61 LP4 & LP5 43.44 22.66

LP6 & LP7 43.11 36.66 LP6 & LP7 45.92 23.2

LP8 & LP9 1.99 45.28 LP8 & LP9 11.46 28.22

LP10 & LP11 44.01 37.17 LP10 & LP11 46.6 23.71

LP12 & LP13 2.14 45.93 LP12 & LP13 13.15 27.92

LP14 & LP15 43.63 35.79 LP14 & LP15 46.38 23.17

Average 37.74 24.0375

▪ 33% reduction in SMT work.

▪ 3-14% improvement in P-Core SMT.

Potentially unfair to compare P- and E-Cores: E-Cores are lowering sibling activity.
(see slide 8 - Hyper-Threading Recap)

51

Thread Director Uncovered

▪ Analyse EHFI classes as part of a hotspot VTune collection.

▪ Most game code will be class 0 :- and will target the P-Cores by default.*

* When not power constrained

52

Introduction

OS Scheduling

Data Capture

Closing Thoughts

Case Studies

53

Case Study Background

▪ Titles used are anonymous

▪ All data taken from titles un-optimised for Hybrid

▪ Data gathered during platform validation

▪ All titles give a good user experience on Hybrid

▪ Used purely to illustrate OS behaviour

54

Case Study 1: Worker Threads on E-Cores

Problem statement:

Title scales on Hybrid but…

0 5000 10000 15000 20000 25000

1

6

11

16

21

26

31

36

41

46

Thread Duration by Core Type

P-Core(ms) E-Core(ms)

5.60

5.70

5.80

5.90

6.00

6.10

6.20

6.30

i9-13900K (8+0) i9-13900K (8+16)

F
R

A
M

E
T

IM
E

 (
M

S
)

HARDWARE CONFIG

Average FrameTime (ms)

▪ Very high E-Core utilisation

▪ Critical threads on E-Cores

16 workers 66% on e-cores

16 workers 50% on e-cores
0

50000

100000

150000

200000

P-Core(ms) E-core(ms)

T
O

T
A

L
 R

U
N

 T
IM

E
 (

M
S

)

Runtime by Core Type

Disclaimer
• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Configurations used for test and this perf data: Intel® i9-12900K + NVIDIA 3090
• All testing was performed at Intel® Munich. Numbers may differ based on actual hardware used and/or based on how the benchmark is written. Intel® makes no guarantee on the specific numbers and it is intended for providing reference
• The above is for reference and work in progress data and software

55

Case Study 1: Non-Hybrid Behaviour

▪ Worker threads * X

▪ Background threads * X

▪ Physics threads * X

Worker threads run serially with physics, background fills in
idle time.

Engine created three thread-pools

Managed by thread priority.

Thread concurrency of 16:

▪ 14 Worker Threads + 2 Main threads

0 20 40 60 80 100

13164

2816

4352

12820

6840

11480

12840

2832

%TotalCPU

14 Physics Threads

14 worker Threads

Background Threads

W
o

rk
e

r

P
h

y
si

c
s

B
a

c
kg

ro
u

n
d

B
a

c
kg

ro
u

n
d

56

Case Study 1: Over reliance on Priority

56

NewThreadId CPU Usage (ms) Ready (ms)

13164 26262.94 170.62 15
2672 21733.46 8170.25 9
11952 18384.48 52.02 15

13204 10747.57 445.80 11
1112 10723.61 445.45 11

10308 10716.05 604.76 11
12416 10691.85 514.57 11
2816 10687.33 519.11 11
2936 10521.04 739.96 11
12820 9885.51 1284.05 11
5172 9859.60 1322.32 11

10204 9853.41 1363.99 11
360 9842.28 1402.56 11
2112 9831.45 1436.90 11

12824 9830.03 1324.76 11
6840 9815.88 1403.71 11
6744 9718.37 1439.86 11

12408 9993.18 9532.86 9
11832 9956.15 9536.22 9
5252 9947.14 9480.11 9
4352 9943.25 9548.69 9
12256 9939.59 9580.09 9
13120 9933.24 9538.27 9
12564 9601.82 9952.32 9
12352 9550.92 10004.38 9
6300 9492.72 10081.98 9
11480 9482.79 10129.44 9
5980 9407.38 10187.29 9
8576 9398.60 10206.77 9
2376 9344.28 10255.47 9

12840 9334.23 10271.34 9

232 2122.71 4278.37
352 2026.23 4438.73
1548 1780.68 132.23 On symmetric system, priority 9 threads spend 50% of their time in Ready Queue

Thread 5,252 sits in a ready state
while 12,416 is running

5,252

12,416

57

Case Study 1: Priority Does Not Block
Background Thread on Hybrid

▪ Priority 9 Ready time drops 10x.

▪ Low priority threads don’t have to wait.

NewThreadId CPU Usage (ms) Ready (ms) Waits (ms)

9404 29561.60 407.07 19.29

16832 26209.49 15.69 6116.78

1948 18290.85 152.10 11550.94

472 11923.43 376.37 17822.46

: : : :

6196 11894.83 390.61 17877.16

17784 11625.97 1006.57 17534.10

15592 11622.22 1006.30 17515.31

11824 11615.71 1020.29 17517.20

P
9

 T
h

re
a

d
s

57

P9 Threads

P11 Threads

P15 Threads

P10 Threads

80%+ CPU Utilisation

58

Case Study 1: Summary

Thread 16,832 running on e-core

▪ Low priority work, runs in parallel with high
priority work.

▪ High priority, long running threads, run on E-
Cores when previous lower priority work is
already in-flight on P-Cores.

▪ Could defer scheduling of priority 10
threads until after priority have started
running.

▪ Could move background threads on to
EcoQos

59

Case Study 2: Unclear Critical Path /
Poor Multi-Threaded Scaling

8% slower with E-Cores enabled

6.29
6.77

i9-13900K (8+0) i9-13900K (8+16)F
ra

m
e

T
im

e
 (

m
s)

Hardware Config

Average FrameTime (ms)

Two issues to investigate:

▪ Long running thread on E-Cores 50% of the time

▪ Thread-pool wall time increasing on Hybrid

0 5000 10000 15000 20000

14456

8448

7644

Thread Duration by Core Type

Symmetric System

0 5000 10000 15000 20000

1…

1…

6…

8…

1…

5…

1…

Thread Duration by Core Type

Hybrid System

Thread creation based on logical processor count
Disclaimer
• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Configurations used for test and this perf data: Intel® i9-12900K + NVIDIA 3090
• All testing was performed at Intel® Munich. Numbers may differ based on actual hardware used and/or based on how the benchmark is written. Intel® makes no guarantee on the specific numbers and it is intended for providing reference
• The above is for reference and work in progress data and software

60

Case Study 2: Poor Multi-Threaded Scaling

Hybrid System

Non-Hybrid System

Amdahl’s Law: 2x increase in
cores should halve wall time.

▪ But: 22 worker threads is
slower than 10 worker
threads.

Hybrid Non Hybrid

metric_CPU operating frequency(GHz) 5.2460 5.3889

metric_CPI 2.3365 1.5610

metric_TMA_Backend_Bound(%) 77.0914 54.9688

metric_TMA_..Memory_Bound(%) 66.0355 42.5052

metric_TMA_....L3_Bound(%) 48.6328 23.5164

5.1ms

Additional threads show high CPI on hybrid.
L3 boundedness increased by 2x.

4.2ms

5.7ms

3.4ms

61

Case Study 2: Unclear Critical Path

61

0

50

100

13112 5212 15760 10760 4168 1880

Histogram:%(Count/Thread CSwitches)

0.10ms(CS%) 0.50ms(CS%) 2.00ms(CS%) 5.20ms+(CS%)

0

20

40

60

80

100

13112 5212 15760 10760 4168 1880

<8(Priority) 8(Priority) 9(Priority) 10(Priority)

11(Priority) 12(Priority) 13(Priority)

0 5000 10000 15000 20000

13112

10760

14260

15380

164

8628

13108

10704

9240

2464

12216
Thread Duration by Core Type

Thread 5,212 is high priority and stays on P-Cores.

Thread 13,112 looks the same as worker threads from the

OS level.

Same priority 11 as workers.

80% short run time on thread wake up.

62

Thread 5,212 waits on thread 13,112

Case Study 2: Summary

62

Two long running threads with hard dependency
between them
context switch while being highly subscribed →
high chance to schedule on an E-Core.
Time spent on E-Core is part of the critical path.

▪ Increase priority of critical path thread
▪ Reduce number of worker threads to reduce

memory contention

Thread 13,112 context switches mid frame

63

Expected
behavior

Case Study 3: Erratic Behaviour Over Time

63

When processor selection goes bad…

Expected thread
behaviour <9 Cores

parked

AI Stalling >9 cores
parked

AI stalling >9 cores
parked

Concurrency by
parking node

▪ Application stutters during
gameplay

▪ AI called on separate threads
decoupled from primary task
system AI threads

Primary
threads

Frame
stutter

Frame
stutter

▪ Threads doing AI change
behaviour over time

▪ Stutter coincides with higher core
parking and long running AI
threads

64

Case Study 3: OS Forced Serialization

64

135ms

Thread switch at quantum
end →
threads never yield

Producer and consumer threads serialised onto core 16

Games is affinitizing to e-cores for AI
Most E-Cores are parked Only core 16 is fully unparked

Why 35ms?

65

Case Study 3: Summary
Remember this??

Does the OS have Idle
Processors

Yes

Prune out
Parked LP’s

Attempt to Unpark
OS Selected LP

Select an active processor, using
Ideal processor
Last processor

OS with Thread Director Feedback

Thread is > priority than
current

Add to end of Rdy Queue

No

Prune away based
on Thread Affinities

No
remaining

LP’s

Unable to unpark
Or new core unsuitable

Yes

New thread ready to run

Serialised threads on RDY
queue

Frame rate stutter linked to core parking

Thread’s Ideal Processor was outside the thread
affinity mask.

▪ Therefore used last used core (16)

Data contention resulted in blocked thread progress
until quantum end

▪ Fixed with SetThreadIdealProcessor

▪ Removed data contention

OS didn’t unpark additional LP’s

Only active LP inside affinity mask
was LP16

66

Introduction

OS Scheduling

Data Capture

Case Studies

Closing Thoughts

67

Hybrid CPU Best Practices
Profile your workload

Don’t oversubscribe your thread pool

Use Quality of Service APIs for OS and Intel® Thread
Director optimizations

▪ QoS APIs can be used in combination with Static Partitioning APIs based on
application architecture

▪ Don’t use hyperthread cores if your workload can’t benefit from hyper-threading

▪ Avoid unnecessary context switches and cache flushes

▪ Use QueryPerformanceCounter () for micro-benchmarking

▪ Use Intel® VTune™ Profiler for in-depth CPU performance analysis

Avoid scheduling lower priority tasks on the same
cores as your critical path

Understand how your middleware uses
threads

Avoid pinning threads to a single logical
processor

Avoid static partitioning; allow cores to steal work from
other cores

▪ Work stealing allows idle threads to take tasks from cores that
may be overworked, increasing throughput

68

Thank you

69

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex (graphics and accelerators).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be
absolutely secure.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel technologies may require enabled hardware, software or service activation.

All product plans and roadmaps are subject to change without notice.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial"
names and not intended to function as trademarks.

Statements that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many
risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors
that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as
the property of others.

http://www.intel.com/PerformanceIndex

70

Link

https://www.intel.com/content/dam/develop/external/us/en/documents-tps/348851-optimizing-x86-hybrid-cpus.pdf

