
Optimizing for Hybrid
Total War: WARHAMMER III

Steve Hughes, Intel
Scott Pitkethly, Creative Assembly

03/2023

2

Introduction to Decoupled Workloads in games

Hybrid Architecture support for Decoupled Workloads

Implementation tips for Decoupled Workloads

Learnings from Total War: WARHAMMER III
by Creative Assembly

3

Hybrid Architecture support for Decoupled Workloads

Implementation tips for Decoupled Workloads

Learnings from Total War: WARHAMMER III
by Creative Assembly

Introduction to Decoupled Workloads in games

4

Decoupled Workloads 101
Decoupled workload is run on a separate thread AND at a different FPS to the main game.

1 432 876 9 121110 13 161514 1918175 20
Game
Frames

Decoupled

Workloads
A

Key Frame 12 is created by Workload A.

Key Frame 20 is created by Workload B.

Frames 13 to 19 lerp from Key Frame 12 to 20.

B C

5

Decoupled Workloads 101b
Some game frames run at the same time as the workloads, some not.

1 432 876 9 121110 13 161514 1918175 20
Game
Frames

Decoupled

Workloads
A

Frames 3→6 and 11→14 and 19→20 will execute more quickly due to no overlap with Decoupled Workloads.

Overall, the frame times are still faster.

B C

6

Ideal Candidate Decoupled Workloads

Generation of
animation stacks

Discrete subsections of the current frames CPU work running at frame speed…

Route planning
for AI units

Line of sight

Complex scene
element creation

Construction of larger assemblies spreading over many frames…

Model and texture
streaming

Level loading

AI

Game subsystems…

Physics Weather
& fluid simulation

7

Decoupled Workload Advantages

Workload does not increase
linearly with framerate.

Can easily run single tasks
that take multiple frames to
complete.

No need for messy RK2/3/4,
Midpoint etc to get correct
results for AI and Physics -
no more “where did 1/2at^2
go???”.

8

Decoupled Workloads Pitfalls

Can lead to irregular
frame times.

Can cause game lag if used
on the wrong game
components.

Can cause stepping for
nonlinear acceleration.

For the rest of this talk we are interested in irregular frame times.
Let's look more closely at why this happens.

9

Decoupled Workloads 101c
Some frames run at the same time as the Decoupled Workload

1 432 876 9 121110 13 161514 1918175 20
Game
Frames

Decoupled

Workloads
A

All frames that overlap with Decoupled Workload have:

This extends their execution time.

B C

Extra work. Potential cache pollution.

10

GFX Driver

Main

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

GFX GFX GFX GFX GFX GFX GFX GFX GFX GFX

Simplified view of a typical game frame w.r.t. GPU and CPU

tasks. We can expect many consecutive frames to be similar.

GFX
Graphics

Task

Threaded

Task

Simple

Task
Dependency

Functional View of a typical frame

11

Functional View of a typical frame
With Decoupled Workload

GFX Driver

Main

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

GFX GFX GFX GFX GFX GFX GFX GFX GFX GFX

While the Decoupled Workload runs, extra work is injected into

the thread system, delaying tasks and extending frame time.

GFX
Graphics

Task

Threaded

Task

Simple

Task
Dependency

Parallel-For from Decoupled work Decoupled Workload

Normal

Frame End

End of this

frame.

12

A Decoupled Workload in the Wild

GPUView

▪ Allows us to visualize our CPU use.

▪ Rows are our threads.

▪ Boxes are tasks or groups of tasks.

▪ Colors represent CPU cores.

During the Decoupled Workload, frames are 2-3ms slower

Short Frames Long Frames Short Frames

13
13

Introduction to Decoupled Workloads in games

Implementation tips for Decoupled Workloads

Learnings from Total War: WARHAMMER III
by Creative Assembly

Hybrid Architecture support for
Decoupled Workloads

14

What is a Hybrid Processor (10000ft view)

E-Cores

P0 P1 P2 P3 P4 P5 P6 P7

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

L1 L1 L1 L1 L1 L1 L1 L1

L1 L1 L1 L1 L1 L1 L1 L1L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2

P-Cores (Hyperthreaded)

E-Cores E-Cores

L3 Cache

L2 L2 L2 L2 L2 L2 L2 L2

E-Cores

P0 thru P8 →Performance Cores

E0 thru E16 →Efficient Cores

L1 First level cache

L2 Second level cache

Each E-Core is equivalent to a Skylake core from a few years back!

15

Realization

E-Cores

P0 P1 P2 P3 P4 P5 P6 P7

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

L1 L1 L1 L1 L1 L1 L1 L1

L1 L1 L1 L1 L1 L1 L1 L1L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2

P-Cores (Hyperthreaded)

E-Cores E-Cores

L3 Cache

L2 L2 L2 L2 L2 L2 L2 L2

E-Cores

Any of these groups of 4 E-Cores would be a great place to run a Decoupled Workload:

▪ Won’t steal CPU time from P-Cores

▪ Less tendency to pollute cache

16
16

Introduction to Decoupled Workloads in games

Hybrid Architecture support for Decoupled Workloads

Learnings from Total War: WARHAMMER III
by Creative Assembly

Implementation tips for Decoupled Workloads

17

A Decoupled Workload in the Wild

GPUView

▪ Allows us to visualize our CPU use.

▪ Rows are our threads.

▪ Boxes are tasks or groups of tasks.

▪ Colors represent CPU cores.

Short Frames Long Frames Short Frames

Decoupled Workloads

18

Moving a P-Core Decoupled Workload to E-Cores

Short Frames Long FramesShort Frames

Decoupled Workloads were causing irregular frame rates due to:

▪ Supporting code in other threads.

▪ Multithreaded flow interference.

▪ Cache interference.

P-Cores

E-Cores

19

Choosing our method

There are 2 ways we can implement this solution where we restrict which threads can run on which cores:

▪ We can use Affinity or,

▪ We can use CPUSets.

To use affinity, we call SetThreadAffinityMask().
We pass in the thread handle and a bit vector
with 1 bit for each core. Set the bit to one if you
want the thread to run on that core, zero if you
don’t.

▪ This is a Hard restriction on the OS.

▪ It is not compliant with power management schemes.

▪ Reduces the OS’ ability to manage workloads.

CPUSets is a relatively new API. To use it, we
give it similar info to SetThreadAffinityMask()
using SetThreadSelectedCPUSets().

▪ Sets a Soft affinity.

▪ OS can balance work more easily.

▪ The full API is well documented on MSDN.

20

Findings

*Results from internal binary which may not exactly match final released version of the game.

We implemented both the Affinity and the CPUSets methods to implement Decoupled Workloads on
the E-Cores and compare the results.

▪ Both methods would cause a small improvement in framerate ~5%*.

▪ CPUSets gave us the predicted improvement in framerate smoothness.

▪ Affinity reduced the framerate smoothness at higher workload.

0

2

4

6

8

10

12

14

16

18

20

90 95 99 99.5 99.9

7 Thread Percentiles

Affinity, CPUSets, Original Game For 1st Half Run
ms (lower is better)

AffinityH1 CPUSetsH1 OriginalH1

0

10

20

30

40

50

60

90 95 99 99.5 99.9

7 Thread Percentiles

Affinity, CPUSets, Original Game For 2nd Half Run
ms (lower is better)

AffinityH2 CPUSetsH2 OriginalH2

21

Conclusion

▪ E-Cores are an ideal fit to execute Decouple Workloads.

▪ E-Cores are great to run extra content that would normally not be enabled
due to performance concerns.

▪ As the developer, you have the best context on your workloads and so are
best placed to judge the benefits of decoupling in your game.

22
22

Introduction to Decoupled Workloads in games

Hybrid Architecture support for Decoupled Workloads

Implementation tips for Decoupled Workloads

Learnings from Total War: WARHAMMER III
by Creative Assembly

THEORY TO PRACTICE

OPTIMISING FOR HYBRID CPUS:

INTRODUCTION

•Scott Pitkethly

•Technical Director on Total War : Warhammer 3

•Been working on battles for more than 2 decades

•Typing this out puts things into perspective!

TOTAL WAR - REAL-TIME BATTLES
OVERVIEW

•Turn-based campaign with real-time battles

•1000s of entities updated in real-time

•Projectiles in game also fully simulated

•Combat, line of sight calculations, animation constraints, calculated for
every entity each tick

•The logical state of the battle we refer to as the Battle Model

TOTAL WAR - REAL-TIME BATTLES
OVERVIEW - BATTLE MODEL

•Can’t ‘lod’ this update in order to preserve deterministic state

•Our multi-player model requires us to enforce a deterministic state on
all machines

•Only the player orders are broadcast

•This means we can’t reduce the complexity of logical updates based
on camera position etc

•Key point here is we update the logical state (or battle model) at a
lower frequency than the frame rate

BATTLE MODEL (LOGIC)

•Has a ‘slow’ update rate between 5-10fps (dependent on game type)

•No motivation to complete this update faster than tick time. Only go
wide when necessary, otherwise you are robbing CPU time from views

•Seemed like a good initial candidate to run on the e-cores

•Keep the p-cores freed up for per-frame calculations

•Conserve energy

BATTLE MODEL (LOGIC)

Model update
Display Frame

t=1
Display Frame

t=0

Future stateCurrent statePrevious state

Display interpolates between previous state to current state whilst the Battle
Model creates the state for the future frame

Frame at
t=n

BATTLE MODEL AND VIEWS

Display Frame (n-1..n)

Logic model
update (n+1)

Display Frame (n-1..n)

Display Frame (n-1..n)

Display Frame (n-1..n)

0.1s

Data synchronised from logic to display

0.2s

TASK SYSTEM

• Bespoke task system using fibres

• Create worker threads based on number of cores (one per physical core on standard architectures)

• Each worker thread has its own task queue

• Worker threads can steal tasks from each others queues when idle

• Workers sleep when no tasks available

• Battle model tick is a task. Create child tasks via parallel_for (when necessary)

• Internal affinity to stop large tasks (render thread task and battle model) ending up on the same
thread

INCORPORATING HYBRID ARCHITECTURES
QUERYING THE CPU

• Use CPUSets to determine CPU topology
and detect hybrid architectures

• CPUSets windows API -
GetSystemCpuSetInformation()

• EfficiencyClass - this is the value that
groups e/p-cores

INCORPORATING HYBRID ARCHITECTURES
QUERYING THE CPU

• Can query cache to keep worker threads from
jumping onto another cpu with a separate L2 cache

• GetLogicalProcessorInformationEx()

• RelationCache - enum

_LOGICAL_PROCESSOR_RELATIONSHIP

INCORPORATING HYBRID ARCHITECTURES
MODIFYING THE TASK SYSTEM

• Separate worker threads created for the e-cores and p-cores (again based on
number available)

• Used CPUSets to tell the OS what cores to run them on

• Modified our task system

• Worker threads have a type (either High Performance or High Efficiency)

• Tasks tagged when spawned with desired type (default is High Performance)

• Workers can only steal tasks from the same type

INCORPORATING HYBRID ARCHITECTURES
FINDINGS

• E-cores are surprisingly fast

• Around 60-70% of speed running battle model

• Probably due to random-access nature of model code, and
memory bus is shared

• Could run model on the e-cores without any noticeable affect on
frame rate, and in some cases gave a boost (as more p-cores
available)

INCORPORATING HYBRID ARCHITECTURES
FINDINGS

• Once we got the battle model running on the e-cores we
introduced other systems:

• Character cloth

• Async Rag-doll

• Vortex effects

PROBLEMS ENCOUNTERED

• Stuttering issue - some users with hybrid cores found the game could stutter. Occasional
frames would take much longer than expected.

• Took a lot of investigation - most profiling tools don’t show you what core a thread is
running on. GPUView and Windows Performance Analyser (WPA) can give you this
information

• Very difficult to observe over a remote connection!

• Results different between Windows 10 and Windows 11

• We noticed in the profiler that the bottleneck was threads taking a long time (>30ms) to
wake up and service new tasks

PROBLEMS ENCOUNTERED

PROBLEMS ENCOUNTERED

• Observed that stuttering occurred on worker thread wake-up (see screen
shot)

• Initially mitigated the stuttering issue by disabling sleeping in our task
system.

• This led to CPU temperature complaints due to thread idling

• PAUSE intrinsic - used in idle loop

• Still hadn’t got a handle on the real cause

FINDINGS
PARKING

• OS wants to conserve power and ‘park’ cores

• Parking is essentially powering down the core

• Discovered if you disable parking in Windows the stuttering
goes away - needed to understand why!

• Thanks to Steve and Leigh at Intel for this discovery and the
following profile capture!

PROBLEMS ENCOUNTERED

}

}

}

High Performance Workers

High Efficiency Workers

Number of cores parked

ETL trace viewed in WPA (from Intel)

FINDINGS
PARKING

• Stuttering directly linked to number of parked cores

• When we understood the ‘parking problem’ things became clear

• OS is parking e-cores as they are often idle for many milliseconds (between model ticks)

• This highlighted an issue with our task system

• We have internal affinity in our task system to stop multiple large tasks ending up on the same
thread

• The Battle Model was forced to run on a specific worker (via our task affinity), but if multiple
e-cores are parked, this specific worker might be queued along with multiple other workers on
a single core

FINDINGS
PARKING

worker_thread_func()

task = get_task()

if(task)

execute(task)

else if(total_tasks==0)

sleep()

Worker 0

Battle Model Task
Affinity - Worker 0

Worker 1

worker_thread_func()

task = get_task()

if(task)

execute(task)

else if(total_tasks==0)

sleep()

Worker n..

worker_thread_func()

task = get_task()

if(task)

execute(task)

else if(total_tasks==0)

sleep()

FINDINGS
PARKING

worker_thread_func()

task = get_task()

if(task)

execute(task)

else if(total_tasks==0)

sleep()

Worker 0

Battle Model Task
Affinity - Worker 0

Worker 1

worker_thread_func()

task = get_task()

if(task)

execute(task)

else if(total_tasks==0)

sleep()

Worker n..

worker_thread_func()

task = get_task()

if(task)

execute(task)

else if(total_tasks==0)

sleep()Many e-cores are parked, so the worker threads are
queued on a single core. The first worker thread can’t
pull a task but there are still tasks in the queue so it
doesn’t sleep and spins until timeout

STUTTER RESOLVED!

}

}

}

High Performance Workers

High Efficiency Workers

Number of cores parked

ETL trace viewed in WPA (from Intel)

FINDINGS
CONCLUSIONS AND SUGGESTIONS

• Use CPUSets to establish CPU topology

• Use CPUSets to bind your threads to e-cores/p-cores

• Use profiling tools that allow you to track which core a thread is running on (GPUView, WPA)
to identify bottlenecks

• Set an IdealProcessor for your threads, helps to keep them on the same core when waking up

• Ensure your task system supports stealing, so if a worker thread does get stalled by being on a
parked CPU it can be executed by other workers

46

Thank you

47

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex (graphics and accelerators).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be
absolutely secure.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel technologies may require enabled hardware, software or service activation.

All product plans and roadmaps are subject to change without notice.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names
and not intended to function as trademarks.

Statements that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks
and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that
could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

http://www.intel.com/PerformanceIndex

