
Adam Lake
Software Engineer, GPU Rendering

03/2023

Scalable Real-Time
Ray Tracing

2 Presentation footer

Intel® Arc A-series Ray Tracing Architecture:
Mapping the DXR API to hardware

Optimizing for Intel Arc A-series
Graphics: Best practices with examples

Vision for the future: Realizing scalable
real-time ray tracing

Intel’s research to enable a future of
scalable ray tracing

Intel® Arc A-series Ray Tracing
Architecture: Mapping the DXR
API to hardware

P
A

R
T

 I
P

A
R

T
 I

I

3

Primer: DXR Programming Model

▪ Extend compute shader Dispatch(x,y,z) to include a full set of shader records

▪ DispatchRays(x,y,z,shader records)

▪ Provide geometry database which rays traverse via an acceleration structure

▪ top level acceleration structure (TLAS)

▪ bottom level acceleration structure (BLAS), geometry represented in a (bounding
volume hierarchy) BVH structure

▪ State handled via ray tracing pipeline state object (RTPSO)

API

▪ Shader records to generate rays

▪ [shader(“raygeneration”)]

▪ Shader records to handle hits and misses of scene geometry

▪ [shader(“anyhit”)], [shader(“closesthit”)], [shader(“miss”)]

▪ anyhit : every hit (transparent geometry, …)

▪ closesthit: executed once for closest hit

▪ miss: ray misses all geometry

▪ intersection: user defined primitives

▪ Indexing of shader records

▪ Shader record indexing handled by runtime, see DXR spec and [Usher 2022]

HLSL

TLAS includes build flags, pointers to
BLAS instances

TLAS

Instance Instance Instance

BLAS BLAS BLAS

BLAS includes matrix transform, build flags,

BVH and geometry

4

DXR Programming Model: Putting it all together

4
“anyhit”

1 “raygeneration”

3
“closesthit”

“anyhit”

2
“closesthit”

“anyhit”

5

“miss”

01
Rays generated via ray generation
shader into the scene geometry

02
Invoke anyhit and closesthit when
acceleration structure traversal determines
an intersection

03
Invoke anyhit and closesthit when
acceleration structure traversal determines
an intersection, ray continues

04
Since this isn’t the closest hit for the ray, only
anyhit shader invoked

05 No geometry intersected by ray, invoke
miss shader

Note:
optional to invoke all shader passes, flags to optimize acceleration structure traversal and early exit

5

Hardware Support for ray tracing

▪ Orange: shader code authored by
programmer, compiled HLSL to the Xe
Vector Engine ISA

▪ Blue: hardware units, programmable by
driver but not via API

▪ Green: state input by application,
managed by runtime and hardware units
to store state while processing a
DispatchRays() call

6

Intel® Arc A-Series support for
hardware ray tracing

▪ 16 Programmable Vector Engines

▪ SIMD8 or SIMD16 mode

▪ Dedicated BVH Cache

▪ Fast access to acceleration structure

▪ 2 Ray Traversal Pipelines combined throughput

▪ 1 ray/triangle intersection per clock

▪ 12 ray/box intersections per clock

▪ Accessible via DXR 1.0, DXR 1.1, Vulkan Extensions

Xe-core

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

Load/Store

I$ L1$/SLM

Traversal
Pipeline -

Box
Intersection

BVH Cache

Traversal
Pipeline -

Box
Intersection

Triangle (Quad)
Intersection

Product
Number of X

e
-cores/

Ray tracing Units

Arc A310 6

Arc A380 8

Arc A750 28

Arc A770 32

Xe-core

7

Thread Sorting Unit (TSU)

▪ Ray traversal in the common case
is incoherent: neighboring rays
generated during ray generation
and subsequent child rays will hit
various objects.

▪ Thread sorting unit gathers
incoherent rays and repacks rays
that share the same shader record
index to improve SIMD utilization

▪ 128 sort keys is upper limit for TSU
for no spills

Built from ground up with divergent workloads in mind

8

Journey of a ray through the pipeline:
Model vs. Reality

Model

▪ API exposes the ray traversal as if its
one single call and we wait for the
return value

9

Reality

Journey of a ray through the pipeline:
Model vs. Reality

Model

▪ API exposes the ray traversal as if its
one single call and we wait for the
return value

▪ At TraceRay() the thread terminates,
state is saved to memory, and
traversal through the BVH begins.

▪ The TSU sorts rays by hit shader
record and executes shaders w/ high
SIMD utilization.

▪ After shader execution the state just
before TraceRay() is restored and
execution continues.

1

2

3

10

GPA Supports DXR

GPA supports DXR

▪ Select DispatchRays()

▪ Visualize:

▪ per shader thread occupancy

▪ time to execute

▪ input and output buffers

▪ …

▪ More features coming in 2023!

11 Presentation footer

Optimizing for Intel Arc A-series Graphics:
Best practices with examples

Vision for the future: Realizing scalable
real-time ray tracing

Intel’s research to enable a future of
scalable ray tracing

Intel® Arc A-series Ray Tracing Architecture:
Mapping the DXR API to hardware

Optimizing for Intel Arc A-series
Graphics: Best practices with examples

P
A

R
T

 I
P

A
R

T
 I

I

12

Ray Tracing Optimizations

Optimization of acceleration structure traversal

▪ Improve performance of traversal of the bounding volume hierarchy

▪ Tradeoffs between efficient updates and traversal

Optimization of shader execution

▪ Tail recursive shaders, single TraceRay() at end of shader vs. multiple TraceRay() calls

▪ Leverage DXR ray tracing specific flags as input to TraceRay()

▪ Avoid use of inline RayQueries

Specific examples and more details today

Application Developer’s Guide for more details [Barczak 2022]

13

Acceleration Structure Best Practices:
Flag usage

Heuristic: Budget for a full TLAS rebuild every frame for stable performance at cost of
higher per frame cost

DO use Ray Tracing Accleration Structure (RTAS) build flags

▪ PREFER_FAST_TRACE for static assets and for top level acceleration structures

▪ PREFER_FAST _BUILD only if PREFER_FAST_TRACE is too slow

DO NOT USE

▪ NO_DUPLICATE_ANYHIT_INVOCATION geometry flag

▪ Disables some performance optimizations: Requires implementation to guarantee only once
per ray anyhit shader invocation

▪ Can potentially cause double digit perf loss!

▪ BUILD_FLAG_ALLOW_UPDATE build flag if it isn’t needed

▪ Expensive in both memory footprint and performance

14

Acceleration Structure Best Practices:
Helping triangles form quads

▪ Use indexed geometry, quad formation does not occur for non-indexed geometry

▪ DO NOT use stream output, produces a disconnected mesh

▪ Avoid disconnected tris, a mesh with no index reuse will result in no quad formation

▪ DO perform vertex cache optimization on index buffers, these produce triangle orderings which
maximize local vertex re-use. Vertex cache optimization is ideal for quad formation. If possible,
optimize for a 16-triangle window.

▪ If GPU generated geometry, do geometry generation in one pass and RTAS construction in
second pass, don’t interleave because it will serialize the BVH build.

14

For good vertex cache optimization: meshoptimizer by Arseny

Kapoulkine: https://github.com/zeux/meshoptimizer

15

Acceleration Structure Best Practices:
Geometry Representation
▪ DO NOT

▪ Duplicate geometry in same location

▪ Hide multiple geometry instances out of view in same
location

▪ Large # of primitives or instances in same position
can cause a TDR if even a single ray finds them!

▪ Combine geometries in a single BLAS if they are far
apart

▪ Empty space hurts performance vs. multiple BVHs
with less unoccupied space

▪ Have multiple instances of smaller BVHs (ie, per
material)

▪ Instead, these should be part of a single BVH

▪ Gives RTAS builder more options for partitioning
geometry and eliminating void areas, gains up to 2x

▪ DO: Avoid long skinny triangles: large bounding
box

Avoid Overlapping

geometry and long

skinny triangles
Avoid Geometry

in a single BLAS

that are far apart,

careful with

animated objects

that separate

over time

16

Acceleration Structure Best Practices:
Barriers

DO avoid barriers between builds:

▪ Issue back-to-back builds
on non-overlapping scratch
memory

▪ BVH build can then be
concurrent vs. serialized
with overlapping scratch

//initialize RTAS Descriptor, single scratch with barriers
for (int i = 0; i < NUM_MESHES; i++)
{

BLASDescArray[i].ScratchAccelerationStructureData = m_scratchResource->GetGPUVirtualAddress();
BLASDescArray[i].DestAccelerationStructureData = m_meshes[i].m_BLAS->GetGPUVirtualAddress();

}

//later, build RTAS
for (int i = 0; i < NUM_MESHES; i++)
{

raytracingCommandList->BuildRaytracingAccelerationStructure(&BLAS[i], 0, nullptr);
commandList->ResourceBarrier(1,&CD3DX12_RESOURCE_BARRIER::UAV(m_meshes[i].m_BLAS.Get()));

}

//initialize RTAS Descriptor, multiple scratch buffers
for (int i = 0; i < NUM_MESHES; i++)
{

BLASDescArray[i].ScratchAccelerationStructureData = m_scratchResource[i]->GetGPUVirtualAddress();
BLASDescArray[i].DestAccelerationStructureData = m_meshes[i].m_BLAS->GetGPUVirtualAddress();

}

//later, build RTAS, no barrier
for (int i = 0; i < NUM_MESHES; i++)
{

raytracingCommandList->BuildRaytracingAccelerationStructure(&BLAS[i], 0, nullptr);
}

Use array of scratch resources and remove barrier vs. a single shared scratch space

17

Acceleration Structure Best Practices:
Alpha tested geometry and hit shaders

▪ Good practice for rasterization,
even more important for Ray
Tracing due to cost of invocation of
any hit shaders

▪ When using alpha tested
geometry implemented as
textured tris and any hit shaders
and the geometry contains large,
transparent regions, subdivide
the geometry so it tightly bounds
the non-transparent region.

18

Shader Optimizations: Ray Flags

• DO use as many ray flags as possible!

• Pass them in as compile time constants so
compiler can see them vs. passing in as constant
buffers

• Even if you know your instances are opaque, still
use FORCE_OPAQUE

• We can optimize knowing only 1 anyhit shader
invoked

• Don’t use FORCE_NON_OPAQUE if you can
avoid it. Ray will assume you can have an any hit
shader for each triangle and has to check. Only
needed for transparent geometry.

Flags of highest value

19

Shader optimizations in practice
struct MyRayPayload { float3 hit_position, normal, diffuse, hit;};

[shader("closesthit")]

void chs_main(inout MyRayPayload pl)

{

pl.hit_position = ComputeHitPosition();

pl.normal = ComputeNormal();

pl.diffuse = ComputeDiffuseColor();

pl.hit = true;

}

[shader("miss")]

void miss (inout MyRayPayload pl)

{

pl.hit = false;

}

RWTexture2D<float3> render_target;

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

float3 color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

if(pl.hit)

color += DoLighting(pl.hit_position, pl.normal, pl.diffuse);

else

color += ComputeMissColor(ray.Origin,ray.Direction);

render_target.Store(DispatchRaysIndex().xy, pl.color);

}

struct MyRayPayload { float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main(inout MyRayPayload pl)

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store(DispatchRaysIndex().xy, pl.color + lighting);

}

[shader("miss")]

void miss(inout MyRayPayload pl)

{

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store(DispatchRaysIndex().xy, pl.color + miss_color);

}

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

}

1

20

Shader optimizations in practice
struct MyRayPayload { float3 hit_position, normal, diffuse, hit;};

[shader("closesthit")]

void chs_main(inout MyRayPayload pl)

{

pl.hit_position = ComputeHitPosition();

pl.normal = ComputeNormal();

pl.diffuse = ComputeDiffuseColor();

pl.hit = true;

}

[shader("miss")]

void miss (inout MyRayPayload pl)

{

pl.hit = false;

}

RWTexture2D<float3> render_target;

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

float3 color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

if(pl.hit)

color += DoLighting(pl.hit_position, pl.normal, pl.diffuse);

else

color += ComputeMissColor(ray.Origin,ray.Direction);

render_target.Store(DispatchRaysIndex().xy, pl.color);

}

struct MyRayPayload { float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main(inout MyRayPayload pl)

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store(DispatchRaysIndex().xy, pl.color + lighting);

}

[shader("miss")]

void miss(inout MyRayPayload pl)

{

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store(DispatchRaysIndex().xy, pl.color + miss_color);

}

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

}

1

2

21

Shader optimizations in practice
struct MyRayPayload { float3 hit_position, normal, diffuse, hit;};

[shader("closesthit")]

void chs_main(inout MyRayPayload pl)

{

pl.hit_position = ComputeHitPosition();

pl.normal = ComputeNormal();

pl.diffuse = ComputeDiffuseColor();

pl.hit = true;

}

[shader("miss")]

void miss (inout MyRayPayload pl)

{

pl.hit = false;

}

RWTexture2D<float3> render_target;

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

float3 color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

if(pl.hit)

color += DoLighting(pl.hit_position, pl.normal, pl.diffuse);

else

color += ComputeMissColor(ray.Origin,ray.Direction);

render_target.Store(DispatchRaysIndex().xy, pl.color);

}

struct MyRayPayload { float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main(inout MyRayPayload pl)

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store(DispatchRaysIndex().xy, pl.color + lighting);

}

[shader("miss")]

void miss(inout MyRayPayload pl)

{

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store(DispatchRaysIndex().xy, pl.color + miss_color);

}

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

}

1

3

2

22

Shader optimizations in practice
struct MyRayPayload { float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main(inout MyRayPayload pl) //still have payload

{

float3 color = render_target.Load(DispatchRaysIndex().xy);

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store(DispatchRaysIndex().xy, color + lighting);

}

[shader("miss")]

void miss(inout MyRayPayload pl) //still have payload

{

float3 color = render_target.Load(DispatchRaysIndex().xy);

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store(DispatchRaysIndex().xy, color + miss_color);

}

[shader("raygeneration")]

void main()

{

RayDesc ray = InitRay();

MyRayPayload pl; //empty, no initialization

TraceRay(... ray, pl);

}

struct MyRayPayload { float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main(inout MyRayPayload pl) //still have payload

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store(DispatchRaysIndex().xy, pl.color + lighting);

}

[shader("miss")]

void miss(inout MyRayPayload pl) //still have payload

{

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store(DispatchRaysIndex().xy, pl.color + miss_color);

}

[shader("raygeneration")]

void main()

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load(DispatchRaysIndex().xy);

TraceRay(... ray, pl);

} 4

23

Real Workloads

1. Tail Recursion: ~9.5% increase* in performance by
making the global illumination (GI) specular
shader tail recursive

2. Minimizing spill data: ~16.7% increase* in
performance in GI renderer

• Bonus!

3. Replacing loop iterators as constants visible to
compiler:

• ~17% increase* in performance in shadow pass

• ~28% increase* in global illumination renderer

Instead of this:

• for(int i=0;i<constant_buffer.loop_count;i++)

Do this:

• On CPU side, add a define to the dxc shader compilation for

DXR:

• dxc_shader.add_define(“LOOP_COUNT”, “1”)

• In HLSL: modify for loop to look like this:

• for(int i=0;i<LOOP_COUNT;i++)

[Intel Sponza Scene 2022]

24

DXR 1.0 TraceRay() vs. DXR 1.1 RayQuery()

▪ DXR 1.1 introduced a synchronous form of
ray tracing by using ray queries from any
shader.

▪ These incoherent ray queries mean we
cannot use the TSU

▪ Longest-running ray query requires the
thread executing a SIMD set of rays to
also occupy a thread slot while waiting for
the longest running thread.

Problem: Longest-running ray determines performance of all rays in the thread

Solution: TraceRay() exits thread, allowing other threads to make progress

25

DXR 1.1: Best practices for RayQuery()

▪ Don’t assume a SIMD32 wave!

▪ Write shader code that does not assume a SIMD32 wide wave
▪ Intel compiles to an optimal SIMD size (SIMD8, SIMD16, or SIMD32) based on register

pressure, groupshared memory utilization, etc.

▪ One way to determine if SIMD size less than 32 is supported:
▪ D3D12_FEATURE_DATA_D3D12_OPTIONS1.WaveLaneCountMin

▪ If wave size of 32 is required
▪ WaveSize<numLanes> attribute in Shader Model 6.6 to compile 32 wide wave

▪ Use wave intrinsics instead of barriers

▪ Barriers can force all waves to wait for longest running wave

26

Asynchronous Compute and Ray Tracing

▪ groupshared (i.e., local memory) and ray tracing hardware acceleration leverages the
same L1 cache

▪ Therefore, to ensure better performance, avoid groupsharedmemory

▪ DXR 1.0 TraceRay()

▪ In compute shaders that are scheduled concurrently

▪ DXR 1.1 RayQuery()

▪ In compute shaders that are scheduled concurrently

▪ In the compute shader issuing the RayQuery()

27

Bonus! More Shader Optimizations…

▪ TraceRay optimizations

▪ Use only one TraceRay() call per shader

▪ Use only one ray generation shader per RTPSO, ideally with only one
TraceRay() call

▪ Ray Payload Optimizations

▪ Set maximum payload size and hit shader attribute counts as low as possible

▪ Pass ray payloads by reference instead of copying them Payloads are stored
in memory, reads and writes compile to loads and stores.

▪ Keep payloads as small as possible, store data as unorm or snorm when
possible and use ALU instructions for conversions.

▪ In general, prefer recompute to load/store!

▪ Don’t put things in ray payloads you can get from other places

▪ Ray data, global constants, …

▪ Do not initialize or rely on initialized payloads before tracing

▪ Compilation and shader management

▪ Avoid including shaders that will not be used in a DispatchRays()

▪ Create separate RTPSOs() for each pass (shadow, AO, reflections, GI, …),
otherwise, compiler assumes all shaders might be used at once

▪ Shader Optimizations

▪ Set recursion depth to 1 if you do not use
recursion

▪ If your shaders don’t use local arguments,
use same table record by setting shader
table stride to 0.

▪ In ray generation shaders, try to have rays
emitted by direction/origin, better cache
coherency, BVH node hits in BVH cache
can increase performance, could be as
much as ~2-3x in some cases!

▪ If possible, avoid any hit shaders

▪ Do not use as an uber shader with a switch
by ray type

▪ Use instance masking and ray flags
instead

▪ Use only when there are no alternatives

▪ DO use miss shaders vs. putting the
skydome into the acceleration structure,
Allows a miss shader to avoid traversing to
leaf nodes of the BVH

28

I can’t remember all of these!

See our Optimization Guide:

Intel® Arc™Graphics Developer Guide
for Real-time Ray Tracing in Games

https://www.intel.com/content/dam/develop/external/us/en/documents-tps/348851-optimizing-x86-hybrid-cpus.pdf
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html

29 Presentation footer

Vision for the future:
Realizing scalable real-time ray tracing

Intel’s research to enable a future of
scalable ray tracing

Intel® Arc A-series Ray Tracing Architecture:
Mapping the DXR API to hardware

Vision for the future: Realizing
scalable real-time ray tracing

Optimizing for Intel Arc A-series
Graphics: Best practices with examples

P
A

R
T

 I
P

A
R

T
 I

I

30

Lower quality visuals with screen space
approximations vs Ray Tracing

Images courtesy of Ghostwire: Tokyo [Intel 2022]

Screen Space Reflections Ray-Traced Reflections

31

Screen Space Reflections are lost when reflected
light source is not on screen

As you tilt you head down, the SSR reflections disappear, this is not how the real-world works!

Images courtesy of Ghostwire: Tokyo [Intel 2022]

32

Enable Ray Tracing

Scalable Real-Time Ray Tracing Effects

Reflections

Number of Reflection Rays per pixel

LOD Resolution for Reflection

Object Range to include in BVH

Shadows

Number of Shadow Rays per pixel

LOD Resolution for Shadow Geometry

Ambient Occlusion

Number of AO visibility rays per pixel

LOD Resolution for AO Rays

33

Scaling number of models included in BVH by
distance from player

0.25 0.25

0.37

0.60 0.60

0.66

0.91

0.99 1.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10

Normalized Relative Total BVH Size vs.

Object Range in MBs

▪ Allow to control the range of objects around the player
that are used to build the BVH for reflections

▪ As Object Range in BVH increases, size of BVH grows

▪ Give user control over visual quality vs. performance

1

2

10

34

XeSS + Ray Tracing

▪ No discussion of

scalability is complete

without upscaling

solutions

▪ Game developers seeing

amazing results

incorporating XeSS with

and without ray tracing.

▪ More details in another
talk that is part of this
series

35 Presentation footer

Intel’s research to enable
a future of scalable ray tracing

Intel® Arc A-series Ray Tracing Architecture:
Mapping the DXR API to hardware

Optimizing for Intel Arc A-series
Graphics: Best practices with examples

P
A

R
T

 I
P

A
R

T
 I

I

Vision for the future: Realizing scalable
real-time ray tracing

Intel’s research to enable a
future of scalable ray tracing

36

Ray Tracing Level of Detail

1 Reflection

Ray

2 Reflection

Rays

4 Reflection

Rays

8 Reflection

Rays

16 Reflection

Rays

No LOD 2.02 2.47 3.20 4.59 7.82

Discrete (Instance Mask) 1.14 1.42 1.91 2.91 5.47

Stochastic (Instance Mask) 1.08 1.36 1.87 2.87 5.49

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

V
K

C
M

D
T

R
A

C
E

R
A

Y
S

 (
M

S
)

Intel Arc A-Series Performance:

No LOD vs. Discrete vs. Stochastic with Instance

Mask, millseconds in VkCmdTraceRays()

Lower is better

No LOD Discrete (Instance Mask) Stochastic (Instance Mask)

▪ Cost of BVH traversal is a key contributor to performance

▪ Reducing the # of triangles in BVH can improve performance

▪ A novel stochastic level of detail (LOD) algorithm for ray tracing from

[Lloyd et al 2020]

▪ What is stochastic LOD?

▪ On a per ray basis, trace LOD[i] or LOD[i+1]

▪ Cross-dissolve stochastically from one to the other based on distance,

ray path length, etc.

▪ Compared to discrete LOD, results in smoother transition

▪ Downsides:

▪ Only 8 levels of transition [Gruen 2021]

▪ The InstanceMask can no longer be used for intended use cases.

For example, the TLAS includes a full set of visible objects but then

uses the InstanceMask for objects that can cast shadows.

Im
a

g
e

 fr
o

m
 L

lo
y

d

2
0

2
0

37

Can we improve on LOD via instance mask?
CPU Side:
New Instance Comparison Structure:

INTC_D3D12_INSTANCE_COMPARISON_DATA instanceComparisonData[NUM_MESHES] = {};
INTC_D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC_INSTANCE_COMPARISON_DATA INTC_ComparisonValueDesc = {};

 for (int i = 0; i < NUM_MESHES; i++)
 {
 instanceComparisonData[0].InstanceComparisonOperator = 0L; //0 = less than or equal, 1 = greater than
 instanceComparisonData[0].InstanceValue = 1; //0…127
 }
 AllocateUploadBuffer(device, instanceComparisonData, sizeof(INTC_D3D12_INSTANCE_COMPARISON_DATA) * NUM_MESHES, &m_INTC_ComparisonData, L"INTC_ComparisonData");

 ComPtr<ID3D12Resource> INTC_ComparisonValuesDescs;
 INTC_ComparisonValueDesc.ExtType = D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC_EXT_INSTANCE_COMPARISON;
 INTC_ComparisonValueDesc.pNext = 0;
 INTC_ComparisonValueDesc.InstanceComparisonData = m_INTC_ComparisonData->GetGPUVirtualAddress();
 AllocateUploadBuffer(device, &INTC_ComparisonValueDesc, sizeof(INTC_D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC_INSTANCE_COMPARISON_DATA),

&m_INTC_ComparisonValuesDescs, L"INTC_ComparisonValueDescs");

HLSL:
Uint mask = SetLODComparisonMask();

TraceRayExt(Scene, RAY_FLAG_CULL_BACK_FACING_TRIANGLES, ~0, mask, 0, 1, 0, ray, payload);

▪ On GPU, Instance Comparison result OR’d with InstanceMask result to determine if ray traces the BVH. If either fails ray will not be tested against object.

128 comparison values [0..127] vs. InstanceMask limitation of 8 can improve smoothness of LOD transition

38

Introducing Traversal Shaders
▪ What are traversal shaders? [Lee 2019 et al.], [Lee 2020 et al.]

▪ New programmable stage: procedural selection of BVH during traversal

▪ Can be mixed with existing HW instancing (procedural instance node type in TLAS, ~SW instancing)

▪ Brings functionality from synchronous Ray Query API with benefits of TSU-based asynchronous sorting

TLAS

BLAS2
BLAS0

Ray Generation
Shader

Intersection
Shader

Any Hit
Shader

Closest
Hit Shader

Miss
Shader

Programmable

Programmable

BLAS1

Fixed-function

Fixed-function

Programmable
(proposed)

Ray Generation
Shader Ray Traversal

Closest
Hit Shader

Intersection
Shader

API Call

Procedural
Leaf

Traversal
Terminated

Hit?

Miss Shader

Triangle
Intersection

Any Hit Shader

Programmable

Fixed-function

Triangle Leaf

Traversal Shader

Programmable

Traversal

Shader

Procedural
Instance

39

Traversal Shaders for Programmable LoD
Motivation

▪ Instance mask may already be reserved for purposes other than LoD (artist control / perf reasons)

▪ LoD selection may depend on hit distance which is unknown at time of TraceRay() call.

▪ Without traversal shaders, multiple TraceRays are needed, e.g. traversing multiple TLAS-es.

Use cases

▪ Stochastic LoD transitions with indirect rays

▪ Adaptive LoD bias for GI: choose coarser

LoD to improve performance based on ray

differentials and hit distance

▪ Proxy fallback for missing LoD: if the BLAS

is not present (streaming, limited build

budget…), forward ray to best available LoD

{

[…]

rayDesc.Origin = ObjectRayOrigin();

rayDesc.Direction = ObjectRayDirection();

uint lod = ComputeLOD();

uint shaderTableOffset = 2u + lod;

ForwardRay(

blasLOD[lod],

shaderTableOffset,

rayDesc,

rayFlags,

rayPayload);

}

TLAS traversal programmatically selecting LOD via ForwardRay()

ForwardRay()is like Traceray()except we specify a low-level BLAS to forward the ray instead of an entire TLAS

40

Programmable LoD Use Cases
Stochastic LOD (incl indirect rays)

▪ 6 LODs

▪ Each LOD 4x reduction in triangles

▪ 4 Reflection rays

▪ 1 shadow ray

▪ Stochastically selects per ray which BVH
LOD to traverse

▪ Running on Intel® Arc A770

41

No LOD
Discrete LOD w/

Traversal Shaders
Stochastic LOD w/
Traversal Shaders

42

Traversal Shader Performance Results

1 Reflection Ray
2 Reflection

Rays

4 Reflection

Rays

8 Reflection

Rays

16 Reflection

Rays

No LOD 2.02 2.47 3.20 4.59 7.82

Discrete (Instance Mask) 1.14 1.42 1.91 2.91 5.47

Discrete (TS) 1.07 1.24 1.66 2.64 5.18

Stochastic (Instance Mask) 1.08 1.36 1.87 2.87 5.49

Stochastic (TS) 1.06 1.25 1.68 2.67 5.24

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

V
K

C
M

D
T

R
A

C
E

R
A

Y
S

(I
N

 M
IL

L
IS

E
C

O
N

D
S

)

Intel Arc A-Series Performance:

Ray Tracing LOD with and without traversal shaders

milliseconds in vkCmdTraceRays()

lower is better

No LOD Discrete (Instance Mask) Discrete (TS) Stochastic (Instance Mask) Stochastic (TS)

▪ Fully programmable

▪ No additional cost over the
InstanceMask based solution

▪ Retain Instance mask functionality

43

Rendering inflection point ….

▪ The future: Ray Tracing Hardware is
ubiquitous, from mainstream to high end
GPUs

▪ Long term art and rendering pipeline
simplification w/ fewer effects requiring
raster and RT implementations

▪ Empower users with control over scalable
ray tracing parameters

▪ Interested in traversal shaders? Email
adam.t.lake@intel.com or
gabor.liktor@intel.com for more details

mailto:adam.t.lake@intel.com
mailto:gabor.liktor@intel.com

44

Acknowledgements

▪ VCG Graphics SW Dev: Przemyslaw Szymanski

▪ VCG GPU Performance: John Gierach

▪ VCG GPU Rendering Team: Alexander Kharlamov, Dave Astle, Daniele Pieroni

▪ AXG GRO Collaborators: Gabor Liktor, Anton Sochenov, Holger Gruen

▪ AXG Architecture team: Josh Barczak

▪ AXG Staff and Marketing: Tom Peterson, Ryan Shrout, Damien Triolet

▪ SATG SSE WPE: Jiawei Shao

45

References

▪ [Barczak 2022] Josh Barczak and Holger Gruen, Intel® Arc™Graphics Developer Guide for Real-Time Ray Tracing in Games.
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html. Last accessed 1/4/2023.

▪ [Gruen 2022] Holger Gruen and Josh Barczak. Video: A Quick Guide to Intel’s Ray Tracing Architecture, GDC 2022. Last accessed 1/18/2023.

▪ [Gruen 2021] Holger Gruen. Ray Traced Level of Detail Cross-Fades Made Easy. Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan and Optix.
https://www.realtimerendering.com/raytracinggems/rtg2/. Edited by Adam Marrs, Peter Shirley, and Ingo Wald. Last accessed 2/26/2023.

▪ [Hector 2020] Tobias Hector, Joshua Barczak, Eric Werness. Ray Tracing in Vulkan. https://www.khronos.org/blog/ray-tracing-in-vulkan. Last accessed 1/4/2023.

▪ [Intel 2022] Inter Arc A-Series Graphics Ray Tracing Technology Deep Dive. https://www.youtube.com/watch?v=J5eIOv-CrB8&ab_channel=IntelGraphics. Last accessed 1/29/2023.

▪ [Intel 2022] Inter Arc Graphics | Intel XeSS Technology Deep Dive. https://www.youtube.com/watch?v=frlXry38tJo&ab_channel=IntelGraphics. Last accessed 1/29/2023.

▪ [Lyoyd 2020] Branch Lloyd, Oliver Klehm, Martin Stitch. Implementing Stochastic Levels of Detail with Microsoft DirectX Raytracing. https://developer.nvidia.com/blog/implementing-
stochastic-lod-with-microsoft-dxr/. Last accessed 2/16/2022.

▪ [Lee et al 2019] Won-Jong Lee, Gabor Liktor, and Karthik Vaidyanathan. Flexible Ray Traversal with an Extended Programming Model. ACM SIGGRAPH Asia 2019 Technical Brief, pp. 17-
20.

▪ [Lee et al 2020] Won-Jong Lee and Gabor Liktor ACM SIGGRAPH Asia 2020. Lazy Build of Acceleration Structures with Traversal Shaders. ACM SIGGRAPH Asia 2020. Technical
Communication, Article No. 11, pp 1-4.

▪ [Tabellion 2010] Eric Tabellion. 2010. Ray Tracing vs. Point-based GI for Animated Films. In ACM SIGGRAPH 2010 Course: Global Illumination Across Industries.

▪ [Usher 2022] The Shader Binding Table Demystified. Ray Tracing Gems II, pp 193-211. https://link.springer.com/chapter/10.1007/978-1-4842-7185-8_15. Last Accessed 1/28/2023.

https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html.%20Last%20accessed%201/4/2023
https://www.youtube.com/watch?v=SA1yvWs3lHU&ab_channel=IntelSoftware
https://www.realtimerendering.com/raytracinggems/rtg2/
https://www.khronos.org/blog/ray-tracing-in-vulkan.%20Last%20accessed%201/4/2023
https://www.youtube.com/watch?v=J5eIOv-CrB8&ab_channel=IntelGraphics
https://www.youtube.com/watch?v=frlXry38tJo&ab_channel=IntelGraphics
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/
https://link.springer.com/chapter/10.1007/978-1-4842-7185-8_15

46

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex (graphics and accelerators).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel technologies may require enabled hardware, software or service activation.

All product plans and roadmaps are subject to change without notice.

Statements that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties
that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ
materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

©2021 EXOR Studios, the EXOR Studios logo, Riftbreaker and the Riftbreaker logo are trademarks or registered trademarks in the United States, European Union and other countries.

© 2022 Bethesda Softworks LLC, a ZeniMax Media company. Ghostwire, Tango, Tango Gameworks, Bethesda, Bethesda Softworks, ZeniMax and related logos are registered
trademarks or trademarks of ZeniMax Media Inc. in the U.S. and/or other countries. All Rights Reserved.

© 2022 IllFonic, LLC. ILLFONIC and Arcadegeddon are trademarks of IllFonic, LLC. All rights reserved.

http://www.intel.com/PerformanceIndex

47

Workloads and Configurations

Claim System configuration Measurement
Measuremen

t period

Intel® Arc™A770
with XeSS delivers
increased ray tracing
performance at 1440p as
measured by FPS when
compared to gameplay
without XeSS

Graphics: Intel® Arc™A770 Graphics, Graphics Driver:
Engineering Driver 3262, Processor: Intel® Core™ i9-
12900K, Asus ROG MAXIMUS Z690 Hero, BIOS: 1601,
Memory: 32GB (2x16GB) DDR5 @ 4800MHz, Storage:
Corsair MP600 Pro XT 4TB NVMe, OS: Windows 11
Version 22000.795

All games tested at 1440p and 1080p using highest

possible settings, except turned off motion blur and

screen effects for Shadow of the Tomb Raider. Chose

highest preset, then manually increased individual

settings to maximum. Ray tracing options set to

maximum on all games. XeSS Performance and

Balanced Mode tested on all titles.

Game workloads that support this claim are

Arcadegeddon, The DioField Chronicle, Ghostwire

Tokyo, Hitman 3, and Shadow of the Tomb Raider

August 5-8,

2022

48

Thank you

