
Adam Lake
Software Engineer, GPU Rendering

03/2023

Scalable Real-Time
Ray Tracing



2 Presentation footer

Intel® Arc A-series Ray Tracing Architecture: 
Mapping the DXR API to hardware

Optimizing for Intel Arc A-series 
Graphics: Best practices with examples 

Vision for the future: Realizing scalable 
real-time ray tracing

Intel’s research to enable a future of 
scalable ray tracing

Intel® Arc A-series Ray Tracing 
Architecture: Mapping the DXR 
API to hardware

P
A

R
T

 I
P

A
R

T
 I 

I



3

Primer: DXR Programming Model

▪ Extend compute shader Dispatch(x,y,z) to include a full set of shader records

▪ DispatchRays(x,y,z,shader records)

▪ Provide geometry database which rays traverse via an acceleration structure 

▪ top level acceleration structure (TLAS) 

▪ bottom level acceleration structure (BLAS),  geometry represented in a (bounding 
volume hierarchy) BVH structure

▪ State handled via ray tracing pipeline state object (RTPSO)

API

▪ Shader records to generate rays

▪ [shader(“raygeneration”)]

▪ Shader records to handle hits and misses of scene geometry

▪ [shader(“anyhit”)], [shader(“closesthit”)], [shader(“miss”)]

▪ anyhit : every hit (transparent geometry, …)

▪ closesthit: executed once for closest hit

▪ miss: ray misses all geometry

▪ intersection: user defined primitives

▪ Indexing of shader records

▪ Shader record indexing handled by runtime, see DXR spec and [Usher 2022]

HLSL

TLAS includes build flags, pointers to 
BLAS instances 

TLAS

Instance Instance Instance

BLAS BLAS BLAS

BLAS includes matrix transform, build flags, 

BVH and geometry
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DXR Programming Model: Putting it all together

4
“anyhit”

1 “raygeneration”

3
“closesthit”

“anyhit”

2
“closesthit” 

“anyhit”

5

“miss”

01
Rays generated via ray generation 
shader into the scene geometry 

02
Invoke anyhit and closesthit when 
acceleration structure traversal determines 
an intersection

03
Invoke anyhit and closesthit when 
acceleration structure traversal determines 
an intersection, ray continues

04
Since this isn’t the closest hit for the ray, only 
anyhit shader invoked

05 No geometry intersected by ray, invoke 
miss shader

Note: 
optional to invoke all shader passes, flags to optimize acceleration structure traversal and early exit
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Hardware Support for ray tracing

▪ Orange: shader code authored by 
programmer, compiled HLSL to the Xe 
Vector Engine ISA 

▪ Blue: hardware units, programmable by 
driver but not via API

▪ Green: state input by application, 
managed by runtime and hardware units 
to store state while processing a 
DispatchRays() call
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Intel® Arc A-Series support for 
hardware ray tracing

▪ 16 Programmable Vector Engines

▪ SIMD8 or SIMD16 mode

▪ Dedicated BVH Cache

▪ Fast access to acceleration structure

▪ 2 Ray Traversal Pipelines combined throughput

▪ 1 ray/triangle intersection per clock

▪ 12 ray/box intersections per clock

▪ Accessible via DXR 1.0, DXR 1.1, Vulkan Extensions

Xe-core

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

XVE XVE

Load/Store

I$ L1$/SLM

Traversal 
Pipeline -

Box 
Intersection

BVH Cache

Traversal 
Pipeline -

Box 
Intersection

Triangle (Quad) 
Intersection

Product
Number of X

e
-cores/

Ray tracing Units

Arc A310 6

Arc A380 8

Arc A750 28

Arc A770 32

Xe-core
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Thread Sorting Unit (TSU)

▪ Ray traversal in the common case 
is incoherent: neighboring rays 
generated during ray generation 
and subsequent child rays will hit 
various objects. 

▪ Thread sorting unit gathers 
incoherent rays and repacks rays 
that share the same shader record 
index to improve SIMD utilization

▪ 128 sort keys is upper limit for TSU 
for no spills

Built from ground up with divergent workloads in mind
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Journey of a ray through the pipeline: 
Model vs. Reality

Model

▪ API exposes the ray traversal as if its 
one single call and we wait for the 
return value
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Reality

Journey of a ray through the pipeline: 
Model vs. Reality

Model

▪ API exposes the ray traversal as if its 
one single call and we wait for the 
return value

▪ At TraceRay() the thread terminates, 
state is saved to memory, and 
traversal through the BVH begins. 

▪ The TSU sorts rays by hit shader 
record and executes shaders w/ high 
SIMD utilization.

▪ After shader execution the state just 
before TraceRay() is restored and 
execution continues. 

1

2

3
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GPA Supports DXR

GPA supports DXR

▪ Select DispatchRays() 

▪ Visualize: 

▪ per shader thread occupancy

▪ time to execute

▪ input and output buffers

▪ …

▪ More features coming in 2023!



11 Presentation footer

Optimizing for Intel Arc A-series Graphics: 
Best practices with examples 

Vision for the future: Realizing scalable 
real-time ray tracing

Intel’s research to enable a future of 
scalable ray tracing

Intel® Arc A-series Ray Tracing Architecture: 
Mapping the DXR API to hardware

Optimizing for Intel Arc A-series 
Graphics: Best practices with examples 

P
A

R
T

 I
P

A
R

T
 I 

I



12

Ray Tracing Optimizations

Optimization of acceleration structure traversal 

▪ Improve performance of traversal of the bounding volume hierarchy

▪ Tradeoffs between efficient updates and traversal

Optimization of shader execution

▪ Tail recursive shaders, single TraceRay() at end of shader vs. multiple TraceRay() calls

▪ Leverage DXR ray tracing specific flags as input to TraceRay()

▪ Avoid use of inline RayQueries

Specific examples and more details today

Application Developer’s Guide for more details [Barczak 2022]
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Acceleration Structure Best Practices:
Flag usage

Heuristic: Budget for a full TLAS rebuild every frame for stable performance at cost of 
higher per frame cost

DO use Ray Tracing Accleration Structure  (RTAS) build flags

▪ PREFER_FAST_TRACE for static assets and for top level acceleration structures

▪ PREFER_FAST _BUILD only if PREFER_FAST_TRACE is too slow

DO NOT USE

▪ NO_DUPLICATE_ANYHIT_INVOCATION geometry flag

▪ Disables some performance optimizations: Requires implementation to guarantee only once 
per ray anyhit shader invocation

▪ Can potentially cause double digit perf loss!

▪ BUILD_FLAG_ALLOW_UPDATE build flag if it isn’t needed

▪ Expensive in both memory footprint and performance
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Acceleration Structure Best Practices:
Helping triangles form quads

▪ Use indexed geometry, quad formation does not occur for non-indexed geometry

▪ DO NOT use stream output, produces a disconnected mesh

▪ Avoid disconnected tris, a mesh with no index reuse will result in no quad formation

▪ DO perform vertex cache optimization on index buffers, these produce triangle orderings which 
maximize local vertex re-use. Vertex cache optimization is ideal for quad formation. If possible, 
optimize for a 16-triangle window.

▪ If GPU generated geometry, do geometry generation in one pass and RTAS construction in 
second pass, don’t interleave because it will serialize the BVH build.

14

For good vertex cache optimization: meshoptimizer by Arseny

Kapoulkine:  https://github.com/zeux/meshoptimizer
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Acceleration Structure Best Practices: 
Geometry Representation 
▪ DO NOT

▪ Duplicate geometry in same location

▪ Hide multiple geometry instances out of view in same 
location

▪ Large # of primitives or instances in same position 
can cause a TDR if even a single ray finds them!

▪ Combine geometries in a single BLAS if they are far 
apart

▪ Empty space hurts performance vs. multiple BVHs 
with less unoccupied space

▪ Have multiple instances of smaller BVHs (ie, per 
material)

▪ Instead, these should be part of a single BVH

▪ Gives RTAS builder more options for partitioning 
geometry and eliminating void areas, gains up to 2x

▪ DO: Avoid long skinny triangles: large bounding 
box

Avoid  Overlapping 

geometry and long 

skinny triangles
Avoid Geometry 

in a single BLAS 

that are far apart, 

careful with 

animated objects 

that separate 

over time
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Acceleration Structure Best Practices:
Barriers

DO avoid barriers between builds:

▪ Issue back-to-back builds 
on non-overlapping scratch 
memory

▪ BVH build can then be 
concurrent vs. serialized 
with overlapping scratch

//initialize RTAS Descriptor, single scratch with barriers 
for (int i = 0; i < NUM_MESHES; i++) 
{ 

BLASDescArray[i].ScratchAccelerationStructureData = m_scratchResource->GetGPUVirtualAddress(); 
BLASDescArray[i].DestAccelerationStructureData = m_meshes[i].m_BLAS->GetGPUVirtualAddress(); 

} 
 
//later, build RTAS  
for (int i = 0; i < NUM_MESHES; i++) 
{ 

raytracingCommandList->BuildRaytracingAccelerationStructure(&BLAS[i], 0, nullptr); 
commandList->ResourceBarrier(1,&CD3DX12_RESOURCE_BARRIER::UAV(m_meshes[i].m_BLAS.Get())); 

} 

 

//initialize RTAS Descriptor, multiple scratch buffers 
for (int i = 0; i < NUM_MESHES; i++) 
{ 

BLASDescArray[i].ScratchAccelerationStructureData = m_scratchResource[i]->GetGPUVirtualAddress(); 
BLASDescArray[i].DestAccelerationStructureData = m_meshes[i].m_BLAS->GetGPUVirtualAddress(); 

} 
 
//later, build RTAS, no barrier 
for (int i = 0; i < NUM_MESHES; i++) 
{ 

raytracingCommandList->BuildRaytracingAccelerationStructure(&BLAS[i], 0, nullptr); 
} 

Use array of scratch resources and remove barrier vs. a single shared scratch space
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Acceleration Structure Best Practices:
Alpha tested geometry and hit shaders

▪ Good practice for rasterization, 
even more important for Ray 
Tracing due to cost of invocation of 
any hit shaders

▪ When using alpha tested 
geometry implemented as 
textured tris and any hit shaders 
and the geometry contains large, 
transparent regions, subdivide 
the geometry so it tightly bounds 
the non-transparent region. 
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Shader Optimizations: Ray Flags

• DO use as many ray flags as possible!

• Pass them in as compile time constants so 
compiler can see them vs. passing in as constant 
buffers

• Even if you know your instances are opaque, still 
use FORCE_OPAQUE

• We can optimize knowing only 1 anyhit shader 
invoked

• Don’t use FORCE_NON_OPAQUE if you can 
avoid it. Ray will assume you can have an any hit 
shader for each triangle and has to check. Only 
needed for transparent geometry. 

Flags of highest value
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Shader optimizations in practice
struct MyRayPayload { float3 hit_position, normal, diffuse, hit;};

[shader("closesthit")]

void chs_main( inout MyRayPayload pl )

{

pl.hit_position = ComputeHitPosition();

pl.normal = ComputeNormal();

pl.diffuse = ComputeDiffuseColor();

pl.hit = true;

}

[shader("miss")]

void miss ( inout MyRayPayload pl )

{

pl.hit = false;

}

RWTexture2D<float3> render_target;

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

float3 color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

if( pl.hit )

color += DoLighting( pl.hit_position, pl.normal, pl.diffuse);

else

color += ComputeMissColor(ray.Origin,ray.Direction);

render_target.Store( DispatchRaysIndex().xy, pl.color );

}

struct MyRayPayload {   float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main( inout MyRayPayload pl )

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store( DispatchRaysIndex().xy, pl.color + lighting );

}

[shader("miss")]

void miss( inout MyRayPayload pl )

{   

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store( DispatchRaysIndex().xy, pl.color + miss_color );

}

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

}

1
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Shader optimizations in practice
struct MyRayPayload { float3 hit_position, normal, diffuse, hit;};

[shader("closesthit")]

void chs_main( inout MyRayPayload pl )

{

pl.hit_position = ComputeHitPosition();

pl.normal = ComputeNormal();

pl.diffuse = ComputeDiffuseColor();

pl.hit = true;

}

[shader("miss")]

void miss ( inout MyRayPayload pl )

{

pl.hit = false;

}

RWTexture2D<float3> render_target;

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

float3 color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

if( pl.hit )

color += DoLighting( pl.hit_position, pl.normal, pl.diffuse);

else

color += ComputeMissColor(ray.Origin,ray.Direction);

render_target.Store( DispatchRaysIndex().xy, pl.color );

}

struct MyRayPayload {   float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main( inout MyRayPayload pl )

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store( DispatchRaysIndex().xy, pl.color + lighting );

}

[shader("miss")]

void miss( inout MyRayPayload pl )

{   

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store( DispatchRaysIndex().xy, pl.color + miss_color );

}

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

}

1

2
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Shader optimizations in practice
struct MyRayPayload { float3 hit_position, normal, diffuse, hit;};

[shader("closesthit")]

void chs_main( inout MyRayPayload pl )

{

pl.hit_position = ComputeHitPosition();

pl.normal = ComputeNormal();

pl.diffuse = ComputeDiffuseColor();

pl.hit = true;

}

[shader("miss")]

void miss ( inout MyRayPayload pl )

{

pl.hit = false;

}

RWTexture2D<float3> render_target;

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

float3 color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

if( pl.hit )

color += DoLighting( pl.hit_position, pl.normal, pl.diffuse);

else

color += ComputeMissColor(ray.Origin,ray.Direction);

render_target.Store( DispatchRaysIndex().xy, pl.color );

}

struct MyRayPayload {   float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main( inout MyRayPayload pl )

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store( DispatchRaysIndex().xy, pl.color + lighting );

}

[shader("miss")]

void miss( inout MyRayPayload pl )

{   

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store( DispatchRaysIndex().xy, pl.color + miss_color );

}

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

}

1

3

2
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Shader optimizations in practice
struct MyRayPayload {   float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main( inout MyRayPayload pl ) //still have payload

{

float3 color = render_target.Load(DispatchRaysIndex().xy);

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store( DispatchRaysIndex().xy, color + lighting );

}

[shader("miss")]

void miss( inout MyRayPayload pl ) //still have payload

{   

float3 color = render_target.Load(DispatchRaysIndex().xy);

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store( DispatchRaysIndex().xy, color + miss_color );

}

[shader("raygeneration")]

void main( )

{

RayDesc ray = InitRay();

MyRayPayload pl; //empty, no initialization

TraceRay( ... ray, pl );

}

struct MyRayPayload {   float16_t3 color; /*lower precision*/ };

RWTexture2D<float3> render_target;

[shader("closesthit")]

void chs_main( inout MyRayPayload pl ) //still have payload

{

float3 hit_position = ComputeHitPosition();

float3 normal = ComputeNormal();

float3 diffuse = ComputeDiffuseColor();

float3 lighting = DoLighting(hit_position, normal, diffuse);

render_target.Store( DispatchRaysIndex().xy, pl.color + lighting );

}

[shader("miss")]

void miss( inout MyRayPayload pl ) //still have payload

{   

float3 miss_color = ComputeMissColor(WorldRayOrigin(),WorldRayDirection());

render_target.Store( DispatchRaysIndex().xy, pl.color + miss_color );

}

[shader("raygeneration")]

void main( )

{

RayDesc ray = initRay();

MyRayPayload pl;

pl.color = render_target.Load( DispatchRaysIndex().xy );

TraceRay( ... ray, pl );

} 4
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Real Workloads

1. Tail Recursion: ~9.5% increase* in performance by 
making the global illumination (GI) specular 
shader tail recursive

2. Minimizing spill data: ~16.7% increase* in 
performance in GI renderer

• Bonus!

3. Replacing loop iterators as constants visible to 
compiler:

• ~17% increase* in performance in shadow pass

• ~28% increase* in global illumination renderer

Instead of this:

• for(int i=0;i<constant_buffer.loop_count;i++)

Do this:

• On CPU side, add a define to the dxc shader compilation for 

DXR:

• dxc_shader.add_define(“LOOP_COUNT”, “1”)

• In HLSL: modify for loop to look like this:

• for(int i=0;i<LOOP_COUNT;i++)

[Intel Sponza Scene 2022]
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DXR 1.0 TraceRay() vs. DXR 1.1 RayQuery()

▪ DXR 1.1 introduced a synchronous form of 
ray tracing by using ray queries from any 
shader. 

▪ These incoherent ray queries mean we 
cannot use the TSU

▪ Longest-running ray query requires the 
thread executing a SIMD set of rays to 
also occupy a thread slot while waiting for 
the longest running thread.

Problem: Longest-running ray determines performance of all rays in the thread

Solution: TraceRay() exits thread, allowing other threads to make progress
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DXR 1.1: Best practices for RayQuery()

▪ Don’t assume a SIMD32 wave!

▪ Write shader code that does not assume a SIMD32 wide wave
▪ Intel compiles to an optimal SIMD size (SIMD8, SIMD16, or SIMD32) based on register 

pressure, groupshared memory utilization, etc.

▪ One way to determine if SIMD size less than 32 is supported:
▪ D3D12_FEATURE_DATA_D3D12_OPTIONS1.WaveLaneCountMin

▪ If wave size of 32 is required
▪ WaveSize<numLanes> attribute in Shader Model 6.6 to compile 32 wide wave

▪ Use wave intrinsics instead of barriers

▪ Barriers can force all waves to wait for longest running wave
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Asynchronous Compute and Ray Tracing

▪ groupshared (i.e., local memory) and ray tracing hardware acceleration leverages the 
same L1 cache 

▪ Therefore, to ensure better performance, avoid groupsharedmemory

▪ DXR 1.0 TraceRay()

▪ In compute shaders that are scheduled concurrently

▪ DXR 1.1 RayQuery()

▪ In compute shaders that are scheduled concurrently

▪ In the compute shader issuing the RayQuery()
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Bonus! More Shader Optimizations…

▪ TraceRay optimizations

▪ Use only one TraceRay() call per shader

▪ Use only one ray generation shader per RTPSO, ideally with only one 
TraceRay() call

▪ Ray Payload Optimizations

▪ Set maximum payload size and hit shader attribute counts as low as possible

▪ Pass ray payloads by reference instead of copying them Payloads are stored 
in memory, reads and writes compile to loads and stores. 

▪ Keep payloads as small as possible, store data as unorm or snorm when 
possible and use ALU instructions for conversions.

▪ In general, prefer recompute to load/store!

▪ Don’t put things in ray payloads you can get from other places

▪ Ray data, global constants, …

▪ Do not initialize or rely on initialized payloads before tracing

▪ Compilation and shader management

▪ Avoid including shaders that will not be used in a DispatchRays()

▪ Create separate RTPSOs() for each pass (shadow, AO, reflections, GI, …), 
otherwise, compiler assumes all shaders might be used at once

▪ Shader Optimizations

▪ Set recursion depth to 1 if you do not use 
recursion

▪ If your shaders don’t use local arguments, 
use same table record by setting shader 
table stride to 0.

▪ In ray generation shaders, try to have rays 
emitted by direction/origin, better cache 
coherency, BVH node hits in BVH cache 
can increase performance, could be as 
much as ~2-3x in some cases!

▪ If possible, avoid any hit shaders 

▪ Do not use as an uber shader with a switch 
by ray type

▪ Use instance masking and ray flags 
instead

▪ Use only when there are no alternatives

▪ DO use miss shaders vs. putting the 
skydome into the acceleration structure, 
Allows a miss shader to avoid traversing to 
leaf nodes of the BVH
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I can’t remember all of these! 

See our Optimization Guide: 

Intel® Arc™Graphics Developer Guide 
for Real-time Ray Tracing in Games

https://www.intel.com/content/dam/develop/external/us/en/documents-tps/348851-optimizing-x86-hybrid-cpus.pdf
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html


29 Presentation footer

Vision for the future: 
Realizing scalable real-time ray tracing

Intel’s research to enable a future of 
scalable ray tracing

Intel® Arc A-series Ray Tracing Architecture: 
Mapping the DXR API to hardware

Vision for the future: Realizing 
scalable real-time ray tracing

Optimizing for Intel Arc A-series 
Graphics: Best practices with examples 

P
A

R
T

 I
P

A
R

T
 I 

I



30

Lower quality visuals with screen space 
approximations vs Ray Tracing

Images courtesy of Ghostwire: Tokyo [Intel 2022]

Screen Space Reflections Ray-Traced Reflections
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Screen Space Reflections are lost when reflected 
light source is not on screen

As you tilt you head down, the SSR reflections disappear, this is not how the real-world works!

Images courtesy of Ghostwire: Tokyo [Intel 2022]
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Enable Ray Tracing

Scalable Real-Time Ray Tracing Effects

Reflections

Number of Reflection Rays per pixel

LOD Resolution for Reflection

Object Range to include in BVH

Shadows

Number of Shadow Rays per pixel

LOD Resolution for Shadow Geometry

Ambient Occlusion

Number of AO visibility rays per pixel

LOD Resolution for AO Rays
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Scaling number of models included in BVH by 
distance from player 

0.25 0.25

0.37

0.60 0.60

0.66

0.91

0.99 1.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10

Normalized Relative Total BVH Size vs. 

Object Range in MBs

▪ Allow to control the range of objects around the player 
that are used to build the BVH for reflections

▪ As Object Range in BVH increases, size of BVH grows

▪ Give user control over visual quality vs. performance

1

2

10
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XeSS + Ray Tracing

▪ No discussion of 

scalability is complete 

without upscaling 

solutions

▪ Game developers seeing 

amazing results 

incorporating XeSS with 

and without ray tracing.

▪ More details in another 
talk that is part of this 
series
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Ray Tracing Level of Detail

1 Reflection

Ray

2 Reflection

Rays

4 Reflection

Rays

8 Reflection

Rays

16 Reflection

Rays

No LOD 2.02 2.47 3.20 4.59 7.82

Discrete (Instance Mask) 1.14 1.42 1.91 2.91 5.47

Stochastic (Instance Mask) 1.08 1.36 1.87 2.87 5.49
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Intel Arc A-Series Performance:

No LOD vs. Discrete vs. Stochastic with Instance 

Mask, millseconds in VkCmdTraceRays()

Lower is better

No LOD Discrete (Instance Mask) Stochastic (Instance Mask)

▪ Cost of BVH traversal is a key contributor to performance

▪ Reducing the # of triangles in BVH can improve performance

▪ A novel stochastic level of detail (LOD) algorithm for ray tracing from 

[Lloyd et al 2020]

▪ What is stochastic LOD?

▪ On a per ray basis, trace LOD[i] or LOD[i+1]

▪ Cross-dissolve stochastically from one to the other based on distance, 

ray path length, etc.

▪ Compared to discrete LOD, results in smoother transition

▪ Downsides: 

▪ Only 8 levels of transition [Gruen 2021]

▪ The InstanceMask can no longer be used for intended use cases. 

For example, the TLAS includes a full set of visible objects but then 

uses the InstanceMask for objects that can cast shadows.
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Can we improve on LOD via instance mask?
CPU Side:
New Instance Comparison Structure:

 
INTC_D3D12_INSTANCE_COMPARISON_DATA instanceComparisonData[NUM_MESHES] = {}; 
INTC_D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC_INSTANCE_COMPARISON_DATA INTC_ComparisonValueDesc = {}; 
 
    for (int i = 0; i < NUM_MESHES; i++) 
    { 
        instanceComparisonData[0].InstanceComparisonOperator = 0L; //0 = less than or equal, 1 = greater than 
        instanceComparisonData[0].InstanceValue = 1; //0…127 
    } 
    AllocateUploadBuffer(device, instanceComparisonData, sizeof(INTC_D3D12_INSTANCE_COMPARISON_DATA) * NUM_MESHES, &m_INTC_ComparisonData, L"INTC_ComparisonData"); 
 
    ComPtr<ID3D12Resource> INTC_ComparisonValuesDescs;     
    INTC_ComparisonValueDesc.ExtType = D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC_EXT_INSTANCE_COMPARISON; 
    INTC_ComparisonValueDesc.pNext = 0; 
    INTC_ComparisonValueDesc.InstanceComparisonData = m_INTC_ComparisonData->GetGPUVirtualAddress(); 
    AllocateUploadBuffer(device, &INTC_ComparisonValueDesc, sizeof(INTC_D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC_INSTANCE_COMPARISON_DATA), 

&m_INTC_ComparisonValuesDescs, L"INTC_ComparisonValueDescs"); 

HLSL:
Uint mask = SetLODComparisonMask(); 

TraceRayExt(Scene, RAY_FLAG_CULL_BACK_FACING_TRIANGLES, ~0, mask, 0, 1, 0, ray, payload); 

▪ On GPU, Instance Comparison result OR’d with InstanceMask result to determine if ray traces the BVH. If either fails ray will not be tested against object.

128 comparison values [0..127] vs. InstanceMask limitation of 8 can improve smoothness of LOD transition
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Introducing Traversal Shaders
▪ What are traversal shaders? [Lee 2019 et al.], [Lee 2020 et al.]

▪ New programmable stage: procedural selection of BVH during traversal

▪ Can be mixed with existing HW instancing (procedural instance node type in TLAS, ~SW instancing)

▪ Brings functionality from synchronous Ray Query API with benefits of TSU-based asynchronous sorting 
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Traversal Shaders for Programmable LoD
Motivation

▪ Instance mask may already be reserved for purposes other than LoD (artist control / perf reasons)

▪ LoD selection may depend on hit distance which is unknown at time of TraceRay() call. 

▪ Without traversal shaders, multiple TraceRays are needed, e.g. traversing multiple TLAS-es.

Use cases

▪ Stochastic LoD transitions with indirect rays

▪ Adaptive LoD bias for GI: choose coarser 

LoD to improve performance based on ray 

differentials and hit distance

▪ Proxy fallback for missing LoD: if the BLAS 

is not present (streaming, limited build 

budget…), forward ray to best available LoD

{

[…]

rayDesc.Origin = ObjectRayOrigin();

rayDesc.Direction = ObjectRayDirection();

uint lod = ComputeLOD();

uint shaderTableOffset = 2u + lod;

ForwardRay(

blasLOD[lod],

shaderTableOffset,

rayDesc,

rayFlags,

rayPayload);

}

TLAS traversal programmatically selecting LOD via ForwardRay()

ForwardRay()is like Traceray()except we specify a low-level BLAS to forward the ray instead of an entire TLAS
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Programmable LoD Use Cases
Stochastic LOD (incl indirect rays)

▪ 6 LODs

▪ Each LOD 4x reduction in triangles

▪ 4 Reflection rays

▪ 1 shadow ray

▪ Stochastically selects per ray which BVH 
LOD to traverse

▪ Running on Intel® Arc A770
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No LOD
Discrete LOD w/ 

Traversal Shaders
Stochastic LOD w/ 
Traversal Shaders
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Traversal Shader Performance Results

1 Reflection Ray
2 Reflection

Rays

4 Reflection

Rays

8 Reflection

Rays

16 Reflection

Rays

No LOD 2.02 2.47 3.20 4.59 7.82

Discrete (Instance Mask) 1.14 1.42 1.91 2.91 5.47

Discrete (TS) 1.07 1.24 1.66 2.64 5.18

Stochastic (Instance Mask) 1.08 1.36 1.87 2.87 5.49

Stochastic (TS) 1.06 1.25 1.68 2.67 5.24
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Intel Arc A-Series Performance:

Ray Tracing LOD with and without traversal shaders

milliseconds in vkCmdTraceRays()

lower is better

No LOD Discrete (Instance Mask) Discrete (TS) Stochastic (Instance Mask) Stochastic (TS)

▪ Fully programmable 

▪ No additional cost over the 
InstanceMask based solution

▪ Retain Instance mask functionality
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Rendering inflection point ….

▪ The future: Ray Tracing Hardware is 
ubiquitous, from mainstream to high end 
GPUs

▪ Long term art and rendering pipeline 
simplification w/ fewer effects requiring 
raster and RT implementations

▪ Empower users with control over scalable 
ray tracing parameters

▪ Interested in traversal shaders? Email 
adam.t.lake@intel.com or 
gabor.liktor@intel.com for more details

mailto:adam.t.lake@intel.com
mailto:gabor.liktor@intel.com
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Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex (graphics and accelerators).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel technologies may require enabled hardware, software or service activation. 

All product plans and roadmaps are subject to change without notice.

Statements that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties 
that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ 
materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

©2021 EXOR Studios, the EXOR Studios logo, Riftbreaker and the Riftbreaker logo are trademarks or registered trademarks in the United States, European Union and other countries.

© 2022 Bethesda Softworks LLC, a ZeniMax Media company. Ghostwire, Tango, Tango Gameworks, Bethesda, Bethesda Softworks, ZeniMax and related logos are registered 
trademarks or trademarks of ZeniMax Media Inc. in the U.S. and/or other countries. All Rights Reserved.

© 2022 IllFonic, LLC. ILLFONIC and Arcadegeddon are trademarks of IllFonic, LLC. All rights reserved.

http://www.intel.com/PerformanceIndex
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Workloads and Configurations

Claim System configuration Measurement
Measuremen

t period

Intel® Arc™A770 
with XeSS delivers 
increased ray tracing 
performance at 1440p as 
measured by FPS when 
compared to gameplay 
without XeSS

Graphics: Intel® Arc™A770 Graphics, Graphics Driver: 
Engineering Driver 3262, Processor: Intel® Core™ i9-
12900K, Asus ROG MAXIMUS Z690 Hero, BIOS: 1601, 
Memory: 32GB (2x16GB) DDR5 @ 4800MHz, Storage: 
Corsair MP600 Pro XT 4TB NVMe, OS: Windows 11 
Version 22000.795

All games tested at 1440p and 1080p using highest 

possible settings, except turned off motion blur and 

screen effects for Shadow of the Tomb Raider. Chose 

highest preset, then manually increased individual 

settings to maximum. Ray tracing options set to 

maximum on all games. XeSS Performance and 

Balanced Mode tested on all titles. 

Game workloads that support this claim are 

Arcadegeddon, The DioField Chronicle, Ghostwire

Tokyo, Hitman 3, and Shadow of the Tomb Raider

August 5-8, 

2022
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Thank you




